AMERICAN FERN JOURNAL

Volume 102
Number 1
January–March 2012

QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY

The Structure of Petioles in *Pteris* (Pteridaceae)
Olga G. Martínez and Ignacio Vilte

The Role of Aquaporins in Water Balance in *Cheilanthes lanosa* (Adiantaceae) Gametophytes
Hope L. Diamond, Heather R. Jones, and Lucinda J. Swatzell

The Effects of Exogenous Cytokinin on the Morphology and Gender Expression of *Osmunda regalis* Gametophytes
Gary K. Greer, Margaret A. Dietrich, Joseph A. DeVol, and April Rebert

Optimization of Protocol for Isolation of Genomic DNA from Leaves of *Selaginella* Species Suitable for RAPD Analysis and Study of their Genetic Variation
Sayantani Das, Maumita Bandyopadhyay, and Subir Bera

Molecular Evidence on the Origin of *Osmunda ×mildei* (Osmundaceae)
C. Tsutsumi, Y. Hirayama, M. Kato, Y. Yatabe-Kakugawa, and S.-Z. Zhang

The Tree Fern Highland Lace is a Cultivar of *Sphaeropteris cooperi*
Daniel G. Yansura and Barbara J. Hoshizaki

Elaphoglossum montanum, a New Species from Southern Brazil
Maria A. Kieling-Rubio and Paulo G. Windisch

SHORTER NOTES

First Record of *Pellaea ovata* (Pteridaceae) from Brazil
Leonardo Biral and Jefferson Prado

Botrychium simplex E. Hitchcock: a New Moonwort for the Indian Himalayan Mountains
B. S. Kholia
The American Fern Society

Council for 2012

MICHAEL WINDHAM, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708. "President"

KATHLEEN PRYER, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708. "President-Elect"

MARY STENSVOLD, USDA Forest Service, 204 Siginaka Way, Sitka, AK 99835. "Secretary"

JAMES D. CAPONETTI, Div. of Biology, University of Tennessee, Knoxville, TN 37996-0830. "Treasurer"

GEORGE YATSKIEVYCH, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299. "Membership Secretary"

JENNIFER M. O. GEIGER, Dept. of Natural Sciences, Carroll College, Helena, MT 59625. "Journal Editor"

R. JAMES HICKEY, Dept. of Botany, Miami University, Oxford, OH 45056. "Memoir Editor"

JOAN N. E. HUDSON, Dept. of Biological Science, Sam Houston State University, Huntsville, TX 77341-2116. "Bulletin Editors"

DAVID SCHWARTZ, 9715 Christey Way, Bakersfield, CA 93312-5617.

American Fern Journal

EDITOR

JENNIFER M. O. GEIGER .. Dept. of Natural Sciences, Carroll College, Helena, MT 59625, ph. (406) 447-4461, e-mail: jgeiger@carroll.edu

MANAGING EDITOR

JILL ANNE DILL .. Dept. of Natural Sciences, Carroll College, Helena, MT 59625, ph. (406) 447-5176, e-mail: jndill@carroll.edu

ASSOCIATE EDITORS

NAN CRYSTAL ARENS Dept. of Geoscience, Hobart & William Smith Colleges, Geneva, NY 14456
JOSE MARÍA GABRIEL Y GALÁN Dept. de Biología Vegetal I, Universidad Complutense de Madrid, Madrid, Spain 28040
GERALD J. GASTONY Dept. of Biology, Indiana University, Bloomington, IN 47405-6801
GARY K. GREER Biology Dept., Grand Valley State University, Allendale, MI 49401
CHRISTOPHER H. HAUFER Dept. of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-2106
R. JAMES HICKEY Dept. of Botany, Miami University, Oxford, OH 45056
PAULO LABIAK Universidade Federal do Paraná, Dept. de Botânica, 81531-980, Curitiba-PR, Brasil
ROBBIN C. MORAN New York Botanical Garden, Bronx, NY 10458-5126
NATHALIE NAGALINGUM Royal Botanical Garden Sydney, Sydney, NSW, Australia
CARL ROTHFELS Botany Dept., Duke University, Durham, NC 27708
EMILY SESSA Botany Dept., University of Wisconsin-Madison, Madison, WI 53706
MICHAEL SUNDUE Pringle Herbarium, The University of Vermont, Burlington, VT 05405
JAMES E. WATKINS, JR. Harvard University, Cambridge, MA 02138

The “American Fern Journal” (ISSN 0002-8444) is an illustrated quarterly devoted to the general study of ferns. It is owned by the American Fern Society, and published at The American Fern Society, % Missouri Botanical Garden, P. O. Box 299, St. Louis, MO 63166-0299. Periodicals postage paid at St. Louis, MO, and additional entry.

Claims for missing issues, made 6 months (domestic) to 12 months (foreign) after the date of issue, and orders for back issues should be addressed to Dr. James D. Montgomery, Ecology III, 804 Salem Blvd., Berwick, PA 18603-9801.

Changes of address, dues, and applications for membership should be sent to the Membership Secretary.

General inquiries concerning ferns should be addressed to the Secretary.

Back volumes are available for most years as printed issues or on microfiche. Please contact the Back Issues Curator for prices and availability.

Subscriptions:

Society Membership – USA, Canada, Mexico (includes Journal and Fiddlehead Forum) $25
Society Membership – All other countries (includes Journal and Fiddlehead Forum) $32
Society Life Membership – $300 (add $140 mailing surcharge for outside USA, Canada, Mexico) $12
Regular Membership – USA, Canada, Mexico (includes Fiddlehead Forum) $19
Regular Membership – All other countries (includes Fiddlehead Forum)
Institutional Membership – $35 to USA, Canada, Mexico; $45 elsewhere (−$2 agency fee)

Postmaster: Send address changes to American Fern Journal, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.
The Structure of Petioles in \textit{Pteris} (Pteridaceae)

OLGA G. MARTÍNEZ and IGNACIO VILTE

IBIGEO, Herbario MCNS, Fac. Cs. Naturales, Universidad Nacional de Salta, Av. Bolivia 5150, 4400-Salta, Argentina, e-mail: martinog@unsa.edu.ar

The paraphyletic genus \textit{Pteris} (Schuettpelz and Pryer, 2007; Prado et al., 2007) includes about 200 mainly pantropical species (Prado and Windisch, 2000). In the American continent there are about 60 species (Tryon and Tryon, 1982). In this paper we report the structure of vascular bundles of the petioles of twelve \textit{Pteris} species, native or naturalized in the Americas: \textit{P. ciliaris} D.C. Eaton, \textit{P. cretica} L., \textit{P. deflexa} Link, \textit{P. denticulata} Sw., \textit{P. ensiformis} Burm.f., \textit{P. exigua} O.G. Martínez and J. Prado (Martínez and Prado, 2011), \textit{P. inermis} (Rosenst.) de la Sota, \textit{P. multifida} Poir., \textit{P. mutilata} L., \textit{P. quadriaurita} Retz., \textit{P. tristicula} Raddi and \textit{P. vittata} L.

Many authors consider the structure of vascular bundles significant in identifying different taxonomic groups, including Ogura (1972), White (1974), Lin and De Vol (1977, 1978), Graçano et al. (2001), Hernández et al. (2006), Hernández-Hernández et al. (2007), Srivastava (2008a, 2008b), among others. Ogura (1972) describe the structure of petioles in \textit{Pteris} as being made only by one stele along their entire course, or several at the base that at some point meet. Lin and De Vol (1977) present a key to Taiwan ferns on the basis of petiole structure, and they provide diagnostic value to the number of vascular bundles, sclerenchyma distribution, presence and number of adaxial grooves, ventilation areas and indument. Lin and De Vol (1978) describe the petiole structure of nine \textit{Pteris} species (including \textit{P. multifida}) and recognize “V”, “U” or “Ω”-shaped vascular bundles. Graçano et al. (2001) indicate that the petiole vascular bundles of \textit{P. denticulata} and \textit{P. leptophylla} Sw. are “U”-shaped, and assume an inverted Ω shape in \textit{P. propinqua} J. Agardh. Bondada et al. (2006) report that the petiole in \textit{P. vittata} has a “U”-shaped vascular bundle. In all cases, the xylem is described with the ends folded of the “hippocampus” type.

There have been no prior anatomical studies of most of the species treated in this work, so we expect our results will add to the anatomical and phylogenetic knowledge about this genus.
MATERIALS AND METHODS

The studies were conducted on herbarium material provided by the following institutions: BA, BM, CTES, G, K, LP, LPB, MCNS, NY, P, S, SI, SP, UNR, US and Z. Living specimens were collected in Argentina and were deposited in the MCNS Herbarium.

For anatomical studies, we considered three areas of the petiole: basal (next to the rhizome), middle (half of the petiole) and distal (next to the blade). Histological sections were made with a rotary microtome and freehand, stained with Safranin-Fast Green and mounted in Canada balsam. The histochemical tests used to detect cutin and suberin, lignin and tannins were Sudan III and fluoroglucine Fe3Cl with CaCO3, respectively (D'Ambrogio Argüeso, 1986). To observe xylem we macerated using the Jeffrey technique (Jeffrey, 1917).

Observations, illustrations and photographs were done with a light Zeiss Standard 16 microscope and a scanning electron microscope of the JEOL JSM 6480LL model, belonging to the Universidad Nacional de Salta (Argentina).

Samples for SEM observations were subjected to an increasing alcohol series, and then dried to critical point with CO2. The metallization was carried out with a thin gold-palladium coating. For the schemes, the conducting tissues are represented by Metcalfe and Chalk (1950), as suggested by Martinez (2003).

Illustrations were made with the aid of a camera lucida.

MATERIAL STUDIED. *P. ciliaris.*—CUBA. East: without locality, 150 m, 9/VI/1915, Ekman 5364 (S); Santiago de Cuba: 1843-4, Linden 1924 (P). HAITI. South: Jérémie, Massif de la Hotte, western group, 800 m, 22/VII/1948, Ekman 10403 (G); Idem, 700 m, 25/XII/1926, Ekman 7415 (BM).

Results

Externally, the petioles are green, yellow with macules or brown, always with a dark base. Their length varies between 1/2–2/3 of the total length of the fronds. The petioles of the fertile fronds are longer than those of the sterile fronds. The diameter in the middle ranges from 1 mm in *P. ensiformis* up to 20 mm in *P. deflexa*.

In cross section, petioles (Figs. 1–18) have bases with triangular or tetragonal boundaries (Figs. 1, 4, 7, 10, 13, 16), and subcircular middle (Figs. 2, 5, 8, 11, 14, 17) to upper sections (Figs. 3, 6, 9, 12, 15, 18) with a simple groove on the adaxial side. This groove runs lengthwise over the entire axis including the rachis, with a considerable depth from the lower basal third, and, as in the base, it is usually slightly concave. Two continuous white lines parallel to this groove, one on each side, are ventilation areas.

The indumentum of petioles consists of scales and trichomes. Scales are common in the base, similar to the rhizomatous structure; they are basifixed,

Brown, deltoid, subulate, linear-lanceolate, sub-opaque, colored in all taxa except P. ciliaris, which presents discolored scales and a sclerotic middle area of more intense color. Trichomes are simple, translucent to whitish, 2–4-cell, except P. multifida with 5–9-cell, and usually deciduous; thus the petioles of mature plants are glabrous except in the region of the longitudinal groove.
In cross section (Fig. 19–22), petioles show a cortex formed -from the outside in- of a monosclerified epidermis covered by a thick cuticle, and 2–18 layers of fibers and parenchyma (Fig. 23). In large plants as P. deflexa the whole cortex is sclerified. This subepidermal supporting tissue has two gaps along the petiole formed by the ventilation areas. The presence of tannins is common in the cortex, which gives the mature petioles a brown to dark color.

In young and fragile petioles, of 1 mm in diameter, ventilation areas are substomatal chambers, while in the robust petioles these areas are composed of parenchymatous tissue, with few intercellular spaces (Fig. 24).

In the medulla, depending on the cross section area, there are one or two vascular bundles. In P. ciliaris and P. multifida, there are two bundles on the base that fuse in the lower third of the petiole by the V-shaped abaxial ends (Fig. 1–3). The nine remaining species have monostelic petioles along the entire shaft.

The stele is “V”-shaped (Fig. 19) in P. ensiformis, P. ciliaris, P. cretica, P. multifida and P. mutilata, “U”-shaped (Figs. 20, 21) in P. vittata and P. denticulata, P. tristicula, P. quadriaurita, and “inverted Ω-shaped” (Fig. 22) in P. deflexa, P. exigua and P. inermis. The opening of the vascular bundle is located towards the adaxial side in all cases.

The vascular bundle is surrounded externally by the monosclerified endodermis with thickening on the radial walls and a pericycle consisting of (1–)2–3 cell layers surrounding the phloem and xylem (Fig. 25). Morphologically, the xylem is characterized by having curved ends in P. vittata or long bent ends which sometimes make contact with the main axis in P. denticulata, P. tristicula and P. quadriaurita. Around the vascular bundles, strands of fibers consist of 4–12 cells, which are isolated in small plants or together in a continuous or discontinuous ring depending on the age of plants.

Depending on the shape of the vascular strands and xylem structure, we propose a classification of the vascular bundles in four possible types:

Type I. V-shaped (Fig. 19), with the ends of the xylem folded in a short hook, with three protoxylem areas: P. ciliaris, P. cretica, P. ensiformis, P. multifida and P. mutilata.

Type II. U-shaped, with two forms: type II-a (Figs. 20, 26) with shortly curved xylem ends and with five to six protoxylem areas observed in P.
vittata, and type II-b (Fig. 21) with the ends long extended, sometimes joined to the main axis, with four protoxylem areas: *Pteris denticulata*, *P. quadriaurita* and *P. tristicula*.
The oxtornal morphological characters of the Pteris petioles, such as a central channel and two lines covering the ventilation areas, have also been

Type III. Inverted-Ω-shaped (Figs. 22, 27), with more than ten protoxylem areas and the xylem interrupted by parenchyma bands (Fig. 28): *Pteris deflexa, P. exigua* and *P. inermis*.

The xylem is mesarch, with protoxylem of helical to ringed walls (Fig. 29). The metaxylem has elongated to lenticular pits (Figs. 30–36).

DISCUSSION

The external morphological characters of the *Pteris* petioles, such as a central channel and two lines covering the ventilation areas, have also been
observed in Asplenium, Christella, Dennstaedtia, Microlepos, Pteridium, and others by Lin and De Vol (1978). The brown to purple coloration of petioles, a color also frequent in Adiantum, Cheilanthes and Pytirogramma, among others, is attributed to the presence of tannins.

The number of steles is an important characteristic for rapid identification of different taxonomic groups. Lin and De Vol (1978) characterized Pteridaceae by the presence of two vascular bundles in the base of petioles that fuse upwards. This has been found in two species, P. cretica and P. multifida, whose xylem bundles join by the abaxial ends in the lower basal third of the shaft. Ogura (1972) finds such development of the vascular bundle in Onoclea, Woodsia and Athyrium, and calls it the “Onoclea form.”

The twelve species studied have a monostelic axis from the middle petiole, although the stele shape varies. According to the classification proposed by Ogura (1972) for the monostelic axes, P. ensiformis, P. ciliaris, P. cretica, P. multifida and P. mutilata present Hymenophyllaceae type stele, whereas P. denticulata, P. quadriaurita and P. tristicula have Loxoma type vascular strand, and P. deflexa, P. exigua and P. inermis present the Pteris podophylla type. This author also describes two distinct types for the genus Pteris, the Loxoma type in P. longifolia Wall., P. tremula R. Br. and P. flavellata Sieb. et Zucc. and the Pteris podophylla type for the same species.

According to the classification suggested in this study, the type I, or V-shaped Hymenophyllaceae type (Ogura 1972), has been mentioned for Adiantum (Pteridaceae) and identified by Bidin and Walker (1985) as “saucer” shaped. Ogura (1972) considers this type to be a derivative of the Loxoma type. Lin and De Vol (1978) describe a petiole cross section of P. multifida that matches that described here for the species.

The type II, U-shaped or Loxoma type, has been reported for P. denticulata, P. excelsa Gaudich., P. leptophylla Sw., P. semipinnata L. and Pteris vittata (Lin and De Vol, 1977, 1978; Gracano et al., 2001; Bondada et al., 2006). Ogura (1972) mentioned the existence of modified forms within the Loxoma type, due to the presence of a varying number of protoxylem areas, i.e., five in P. longifolia L. and four to eight in P. tremula and P. flavellata. In this study, we found differences in the number of protoxylem bundles in and the ends of the xylem, so we proposed two different subtypes, II a and b. The first subtype is characteristic of P. vittata while the subtype II-b, is characterized by having ends fused to the main shaft, which gives the appearance of rounded ends, and this is likely why Ogura (1972) considered the species of Pteris mentioned above to have a xylem devoid of hooks.

The type III, inverted Ω-shaped, has been reported for P. propinqua (Gracano et al., 2001) and P. wallichiana J. Agardh (Lin and De Vol, 1978). This monostelic type is considered by Ogura (1972) as a simple form derived from a polystelic type comprising several meristelees arranged in a horseshoe, called Saccoloma. Also Gifford and Foster (1996) qualify the monostelic condition of vascular bundles as primitive, and the polystelic condition as specialized. According to this criterion and considering that several interruptions caused by parenchyma bands have been found in the Ω form and the fact that the
numerous protoxylem groups are distributed regularly, we may consider this type to be a derivative form within the genus Pteris. The presence of parenchyma in the xylem has been cited in the rhizome of Astrolepis sinuata (Lag. ex Sw.) D.M. Benham & Windham (Scheiner and Carlquist, 1997), but no studies describing this feature in petioles have been found.

Potgieter and van Wyk (1992) mention the existence of intercellular pectic projections in the petioles of many ferns, including some Pteris species. These structures have not been recorded in the specimens studied, although specific future studies with more precise techniques could detect them. In the same way, the ultrastructural details of the xylem of these species could be studied.

The results of this work show that Pteris vittata has different characteristics in the vascular bundles from other species of Pteris. Martínez (2010) showed that spore characteristics of P. vittata are different from other species of Pteris. With the spore differences, these vascular bundle results reaffirm the results of molecular studies by Prado et al. (2007), which determined that to achieve monophyly of Pteris P. vittata should be segregated from other species of Pteris.

ACKNOWLEDGMENTS

We thank the herbarium curators who provided the material. We also thank Sherwin Carlquist for his valuable suggestions and review, one anonymous reviewer and the editor Jennifer Geiger who contributed to improve this manuscript; Pedro Villagrá and for his help during the scanning electron microscopy process and María del C. Otero Cabada for the outline of the drawings. This project has been subsidized by the Consejo de Investigación del Consejo Nacional de Salta.

LITERATURE CITED

The Role of Aquaporins in Water Balance in *Cheilanthes lanosa* (Adiantaceae) Gametophytes

HOPE L. DIAMOND

University of North Texas, Risk Management Services, 1155 Union Circle #310950, Denton, Texas 76203-5017

HEATHER R. JONES and LUCINDA J. SWATZELL*

Southeast Missouri State University, Department of Biology, MS 6200, Cape Girardeau, Missouri 63701

ABSTRACT.—Aquaporins are transmembrane proteins that move water specifically and bidirectionally in response to internal cell signaling. With aquaporins, plant cells can control how, where, and when water moves across membranes. Thus, plants are in strong control of their environmental responses. Therefore, it seems likely that aquaporins would have a key role in water balance in xerophytic ferns, particularly in the gametophyte stage. To investigate the role of aquaporins in desiccation avoidance in xerophytic ferns gametophytes, *Cheilanthes lanosa* gametophytes were poisoned with micromolar mercury solutions, which block aquaporin channels, exposed to several osmolytes, and quantified the efflux of water from the cells was quantified. Results strongly suggest that aquaporins may very well play a role in water balance, but also pose some questions concerning the ability of the protonemal stage to fully manage water flow.

KEY WORDS.—aquaporin, *Cheilanthes lanosa*, fern, flux, gametophyte, mercury, NaCl, osmotic potential, sucrose, water

Water and osmoregulation has been a challenge since the beginning of cellular life. The first protocells would have had to constantly control the solutes and water content of the cytoplasm to maintain life. Therefore, it seems plausible that all bacterial, protozoan, animal, fungal, and plant cells would have and should still contain highly conserved mechanisms to move water in and out of cells (Chrispeels and Agre, 1994; Chrispeels and Maurel, 1994; Maurel, 1997).

Water-specific channels for water balance, aquaporins, exist in every kingdom and species. And, although common sense calls for the existence of such a practical mechanism, discovery of these channels was difficult. Indirect evidence demonstrated the rationale for such a simple mechanism at least twenty years before their discovery. Philip (1958) reviewed the data on water movement across lipid bilayers, and averred that the actual rate of water movement into cells is much more rapid than what should occur across a lipid bilayer. Yet, all future botanists were taught that water movement occurs through osmosis across a plant plasma membrane. Finally, in 1984, aquaporins were concurrently discovered in bovine eyes (Gorin *et al.*, 1984) and erythrocytes (Macey, 1984; Agre *et al.*, 1987). Very quickly, aquaporins were

* Author for communication
identified in rat kidney tubules, fungi, bacteria, and of course, plants (reviewed in Agre et al., 1995; Chrispeels and Agre, 1994).

One impediment to the discovery of aquaporins was specificity. Any water-specific channel would have to exclude ions, which are smaller than water molecules. Confusion over potential structure helped delay the search for a water control mechanism. However, following the discovery of aquaporins, the elucidation of the structure revealed how an organism could effectively move water and exclude ions. The proteins are a constructed from six membrane regions that form a spiral internal channel (Fotiadis et al., 2001). Water, which is angled, flows through the spiraled channels but smaller molecules, such as sodium and potassium, cannot pass through the center (Fotiadis et al., 2001). Aquaporins are controlled by a phosphorylation switch (Johnson and Chrispeels, 1991; Johansson et al., 1996, 1998), and thus, cells are in control of water movement. The channels are also bidirectional; water may flow out of cells or into cells (Steudle, 1992; Tyerman et al., 1999). For plants, this is a perfect control mechanism. Cytoplasm solute control and aquaporin gating combine to allow a functional cytoplasmic environment within a range of conditions (Kaldenhoff et al., 1993, 1995; Maurel et al., 1995; Maurel, 1997).

Studies on aquaporins have resolved many complicated questions regarding plant functions. Aquaporins exist in xylem and phloem and help prevent cavitation (Voicu et al., 2009). Aquaporins exist in root cortical and endodermal cells and help generate or resolve pressure of water flow (Vandeleur et al., 2005; Steudle and Peterson, 1998). Aquaporins in guard cell tonoplasts respond to changes in blue light and abscisic acid and allow water flow into and out of the vacuole (Kaldenhoff et al., 1993). Aquaporins are also involved in water movement and management during water stress (Suga et al., 2002).

Based on the above findings, we hypothesized that aquaporins may play a key role in the survival of fern gametophytes in xeric environments as mechanisms for water management. To test this hypothesis, we chose a common North American xerophytic fern, Cheilanthes lanosa (Michx.) D.C. Eat. for this study because it inhabits a variety of substrates (Mickel, 1979), though it is commonly found among other xerophytic species (Mohlenbrock, 1959), and possesses many of the features that other xerophytic ferns possess, such as microphyll (Pickett, 1931; Hevly, 1963; Quirk and Chambers, 1981), trichomes (Quirk and Chambers, 1981), mycorrhizal associations (Palmieri and Swatzell, 2004), cuticle on the gametophyte (Lingle et al., 2004), and the ability to regenerate after desiccation (Diamond et al., 2003). In addition, like many other xerophytic gametophytes, C. lanosa gametophytes are apogamous (Steil, 1933, 1939; Hevly, 1963). The gametophytes are also not heavily covered with wax, are one-cell in thickness, and appear generally unprotected from their surroundings. Thus, the C. lanosa gametophytes could represent the physiological state of numerous xerophytic ferns. We predicted that if it was possible to identify aquaporins in this fern gametophyte, and if we could poison these proteins with low levels of mercury, which blocks the protein channel (Preston et al., 1993; Kuwahara et al., 1997), we could effectively
control water movement out of desiccating cells. This would suggest at least a potential role for aquaporins in xerophytic gametophyte water management.

Materials and Methods

To test our hypothesis, we examined different developmental stages and in different microclimates for the *Cheilanthes lanosa* gametophyte. Each development stage and microclimate condition will heretofore be designated as simply a "stage."

Plant Collection

Cheilanthes lanosa sporophylls were collected in the fall of 2003 after the first frost from Makanda, Illinois, placed in glass 9 cm Petri dishes, and stored in the dark at 4°C. After several months, sporophylls were crushed using a mortar and pestle. *Cheilanthes lanosa* spores average 40 μm in diameter (Devi *et al.*, 1971) and thus spores were separated from the plant material using a 65 μm brass mesh sieve. Spores were stored at 4°C in the dark.

Culture Conditions

Wet grown (WG) gametophytes and protonemal callus (callus).—Spores were surface sterilized in a 7% (v/v) commercial bleach solution with 0.1% (v/v) Triton X-100 for 10 min. Spores were then rinsed in sterile ddH₂O and sown on a modified tissue culture medium (TCM; 20 mM NH₄NO₃, 20 mM KNO₃, 1.5 mM MgSO₄·7H₂O, 1.0 mM MnSO₄·H₂O, 30.0 μM ZnSO₄·7H₂O, 0.1 μM CuSO₄·5H₂O, 3.0 mM CaCl₂·2H₂O, 5.0 μM KI, 0.1 μM CoCl₂·6H₂O, 0.8 mM KH₂PO₄, 0.9 mM H₃BO₃, 1.0 μM Na₂MoO₄·2H₂O, 0.1 mM FeSO₄·7H₂O, 0.1 mM Na₂EDTA, 0.23 μM kinetin, 0.86 μM 2,4-D, 0.4 μM nicotinic acid, 0.3 μM pyridoxine, 1.3 μM thiamine, 0.56 mM myo-inositol, pH 5.7; Smith, 1992) in 9 cm Petri dishes. Spores were incubated at 25°C in 0.175 μmol·m⁻²·s⁻¹ of continuous far red light (650–705 nm) for 10 d.

Following germination and protonemal development, the plates were separated. Some plates were left in the far red light to enhance callus growth and the remaining plates were then exposed to continuous white light and the protonema began planar growth into gametophytes.

Dry grown (DG) gametophytes.—Dry grown gametophytes were sown on fine grain white sand (Décor Sand, Activa Products Inc., Marshall, Texas, USA) wetted with 20 mL of TCM and incubated as the WG and callus cultures described above. Thereafter, upon drying, DG gametophytes wetted erratically with ddH₂O.

Antibody Production

To establish the molecular weight of the target protein, ensure specificity of binding of the anti-aquaporin antibody, and to detect the presence of
aquaporin-like proteins in gametophytes, an antibody against maize PIP1 aquaporin was raised using a homologous sequence from previously mapped aquaporins in maize (Chaumont et al., 2000). Rabbit anti-aquaporin antibody was produced by Biosource (Invitrogen; Biosource, Camarillo, California, USA) against a conserved amino terminus sequence of PIP1 maize aquaporin, MEGKEEDVRVGANKFPERQPIGTSAQS as described by Chaumont et al. (2000).

ELISA (enzyme-linked immunosorbent assay)

In order to test for the presence of aquaporin-like proteins, an enzyme-linked immunosorbent assay was performed to detect a wide range of aquaporin concentrations in various gametophyte stages. Approximately 20 mg of WG gametophyte material was homogenized in 200 µL of coating buffer (15 mM Na2HCO3, 35 mM NaHCO3, pH 9.5) in a mortar and pestle. The sample was then centrifuged at 10,000 rpm for 10 min. The supernatant was retained and centrifuged again at 10,000 rpm for 10 min. The sample was then diluted in 1 ml of coating buffer. The concentration was approximately 3 µg of material for every 50 µL of coating buffer. The antigen-coating buffer solution was then pipetted in 50 µL increments into a 96-well polystyrene microtiter plate. The plate was covered and allowed to incubate overnight at 4°C. The following morning, the antigen solution was removed by inverting the plate and washing three times with Tris-Tween washing buffer (TTW; 10 mM Tris, 150 mM NaCl, 0.1% Tween-20, pH 7.2). In all the washing steps, the wells were completely filled (~350 µL). Plates were blocked with 3% (w/v) low-fat milk powder in TTW for 30 min. The wells were then washed three times with TTW. Once the TTW was removed, 100 µL of rabbit anti-aquaporin (1:500; Biosource, Camarillo, California, USA) in TTW, rabbit preimmune serum (1:500; Biosource, Camarillo, California, USA) in TTW, or TTW only (secondary antibody only control) was placed into the wells and allowed to incubate for 60 min. The wells were washed three times with TTW. The TTW was removed and 50 µL of goat anti-rabbit horseradish peroxidase (1:500; Sigma-Aldrich, St. Louis, Missouri, USA) in TTW, or TTW only (primary antibody only control) was added and allowed to incubate for 60 min. The wells were again washed three times with TTW. The chromogenic enzyme reaction was then initiated by addition of freshly prepared solution of 1.5 mg o-phenylenediamine and 2 µL of 30% (v/v) H2O2 dissolved in 2 mL of citrate-phosphate buffer (0.2 M Na2HPO4, 0.1 M citric acid, pH 5.0) at 50 µL per well. H2O2 was added immediately prior to use. The enzyme reaction was allowed to incubate for 15 min and the reaction was halted by the addition of 50 µL of 0.5 M H2SO4 per well. The plate was then read at 492 nm on a Beckman DU640B spectrophotometer (Beckman Coulter, Fullerton, California, USA).

Immunoblotting

To establish the molecular weight of the target protein and to ensure specificity of binding of the anti-aquaporin antibody, immunoblotting was
performed. Approximately 100 μL of Cheilanthes lanosa callus, WG, or DG plant material was ground in homogenization buffer [10 mM KCl, 1 mM MgCl₂, 50 mM HEPES, 300 mM sorbitol, 0.1% (w/v) BSA and 1 mM EDTA, pH to 7.2]. Samples were mixed 1:1 2X Laemmli sample buffer [Sambrook et al., 1989; 4% (w/v) SDS, 10% (v/v) mercaptoethanol, 0.002% (w/v) Bromphenol Blue, 20% (v/v) glycerol, 120 mM Tris, pH 6.8], incubated for 10 min at 90°C, centrifuged at 10,000 rpm for 10 min. Total protein concentration was determined using the Bradford Assay (Stoschek, 1990). Samples were loaded onto a 12% (w/v) polyacrylamide gel at 35 μl per well and 20 μg/mL concentration. Samples were electrophoresed at 16 mA constant current for approximately 30 min. A broad range marker (Kaleidoscope; BioRad, Hercules, California, USA) was used for reference. Proteins were then transferred at 45 mA constant current for 20 min onto a nitrocellulose membrane (0.2 μm pore size). Following transfer, the membranes were rinsed three times in TTBS [137 mM NaCl, 2.7 mM KCl, 24.8 mM Tris, 0.2% Tween (v/v)], and blocked in 3% (w/v) bovine serum albumin (BSA) in TTBS. Membranes were then rinsed three times for 5 min each in TTBS. Membranes were then incubated overnight at 4°C in either preimmune serum (BioSource, Camarillo, California, USA; 1:500 in TTBS), rabbit anti-PIPl aquaporin (BioSource, Camarillo, California, USA; 1:500 in TTBS), or TTBS only (secondary antibody only control). Membranes were again rinsed 3 times for 5 min in TTBS. Following the rinse, membranes were incubated in goat anti-rabbit alkaline phosphatase (1:500 in TTBS; Sigma-Aldrich, St. Louis, Missouri, USA), with the exception of the primary antibody only control, which was incubated in TTBS only, each for 1 h at 25°C. Membranes were then rinsed three times for 5 min each in TTBS. The membrane was then colorized with a fresh mixture of 20 mL of alkaline phosphate buffer (100 mM NaCl, 5 mM MgCl₂, 100 mM Tris, pH 9.5), 132 μL of nitro blue tetrazolium (NBT) stock, and 66 μL of 5-Bromo-4-chloro-3'-indolyphosphate P-Toluidine (BCIP) stock (Sambrook et al., 1989). After agitation for 5 min, the membrane was briefly rinsed with ddH₂O and the reaction was stopped with 20 mM ethylene diamine tetraacetic acid (EDTA).

Osmolality Stress

In order to test for aquaporin function and potential control of function in gametophyte stages, gametophytes were exposed to desiccating levels of osmolytes with and without mercury exposure. Although the preferred test for function of aquaporins is expression of mRNA in Xenopus oocytes (which do not express aquaporins), PIP1 mRNA does not express well in oocytes (Preston et al., 1992). Therefore, another standard, the immersion of samples in mercuric chloride at low levels (1 mM; Macey, 1984) was used. Wet grown (WG) gametophytes, callus and dry grown (DG) gametophytes were exposed to 2 separate treatments. One treatment consisted of time increments of NaCl, CaCl₂, or sucrose and was used to show gametophyte response to long term increasing environmental stress. Gametophytes were pretreated in 200 μL well slides in 100 μL of ddH₂O or ddH₂O plus 1 mM HgCl₂ for 20 min. Gametophyte images were captured digitally. At t₀, and subsequently every 5 min afterward,
50 mM increments of the respective solute were added until the solution in the well slide reached 500 mM osmolality. Images of gametophytes were captured after 1 h. The second treatment was used to show gametophyte response to immediate stress. This treatment began with a 20 min pretreatment in a 200 μL well slide in 100 mM isotonic solute solution (NaCl, CaCl₂, or sucrose) or 100 mM isotonic solution plus 1 mM HgCl₂. Gametophyte images were captured digitally. At t₀, 400 mM of solute in 100 μL of ddH₂O was added to the well so that the solution in the well reached 500 mM osmolality. Images of the gametophytes were captured after 1 h.

Cell volume was determined using six diameter measurements. Average radii were used to extrapolate the sphere volume and surface area. Only hourly rates of efflux were calculated. This is because diffusion out of these cells was slow enough to allow the necessary resolution to demonstrate loss of function of water channels under mercury poisoning. Well slides were incubated in a moisture chamber in the interim times between increments to prevent water loss from the wells. The efflux of water out of each of 100 cells from each treatment was measured using Fick's Law:

\[
\text{Flux} = -PS \frac{(Osm_o - Osm_i)}{D}
\]

Where -P = permeability (negative because against the concentration gradient), S = surface area, Osm₀ = osmolality outside of cell, Osmᵢ = osmolality inside of cell, and D = distance (modified from Qui et al., 2000).

Data Capture and Image Analysis

For cell volume and trichome position, gametophyte images were captured digitally on an Olympus SZ40 (Olympus America, Center Valley, Pennsylvania, USA) with SPOT Advanced 3.2 software (Diagnostic Instruments, Sterling Heights, Michigan, USA). Measurements were made using SPOT Advanced 3.2 software. Measurements of 100 cells were conducted for each treatment. To assess the influence of treatment, medium, fern stage and timing, a three-way Analysis of Variance (ANOVA; P = 0.05; n = 3600) with interaction was undertaken using the SAS General Linear Model Procedure (SAS 1999–2000; SAS, Cary, North Carolina, USA). A Tukey’s Studentized test was then performed to determine significant differences between media, with a primary focus on the comparison of HgCl₂ and ddH₂O pretreatments. To graph individual treatments, box plots were developed using JMP Statistical Discovery Software (SAS Programming, Serial No. GV0KZ9JJ07, © 2007; SAS, Cary, North Carolina, USA) and modified using PaintShopPro 6.02 (Jasc Software, Ottawa, Ontario, Canada).

RESULTS

ELISA and Immunoblotting

To establish the potential presence of an aquaporin-like protein in germinating spores and gametophytes, ELISA was performed on callus and
immunoblotting was performed on DG and WG gametophytes. In ELISA, primary antibody only, secondary antibody only, and the preimmune serum controls were negative (Fig. 1A). The positive control, application of anti-aquaporin antibody applied to radish root homogenate, resulted in a strong cross-reaction of root total protein with the anti-aquaporin antibody. The immunoblotting procedure produced a single band when the anti-aquaporin antibody was applied to the mature gametophyte sample (Fig. 1B). Primary antibody only, secondary antibody only, and preimmune serum controls were negative. The positive control, application of anti-aquaporin antibody applied to radish root homogenate, resulted in a strong cross-reaction of root total protein with the anti-aquaporin antibody.

Increment Solute Treatments

NaCl and CaCl₂.—To measure the response of different stages of gametophytes to hyperpolarizing solutes, which destabilize plasma membranes and often alter membrane protein function, samples were exposed to incremental increases of NaCl and CaCl₂. When preincubated in ddH₂O and then exposed to NaCl increments, callus quickly plasmolyzed to the extent that protoplasm fluid was almost entirely extracted and chloroplasts clumped tightly with nuclei and other cell contents (Fig 2A). Callus cells visibly plasmolyzed when exposed to slow increments in NaCl concentrations. Mean of cell volume loss in treatments in which NaCl was added in slow increments was $6.65 \times 10^{-4} \text{ cm}^{-3} \pm 10.86 \times 10^{-4}$. Following an incubation in HgCl₂, callus flux levels significantly dropped (Fig. 2B). Cells appear fully intact up to 500 mM NaCl. In addition, variation in the response was greatly reduced. Mean of cell volume flux in NaCl treatments with a HgCl₂ incubation prior to the incremented NaCl treatment was $0.21 \times 10^{-4} \text{ cm}^{-3} \pm 0.47 \times 10^{-4}$. Plasmolysis also occurred when WG gametophytes were exposed to slow increases in NaCl (Fig. 2C). Mean of cell volume loss in treatments in which NaCl was added in slow increments was $4.86 \times 10^{-4} \text{ cm}^{-3} \pm 6.93 \times 10^{-4}$. WG flux levels significantly dropped after the introduction of HgCl₂ (Fig. 2D). Cells appear uncompromised. Standard deviations and variation was similar for both WG treatments. Mean of cell volume flux in NaCl treatments with HgCl₂ incubation prior to the incremented NaCl treatment was $0.55 \times 10^{-4} \text{ cm}^{-3} \pm 3.23 \times 10^{-4}$. DG gametophytes appeared to maintain cell viability in NaCl increments up to 500 NaCl (Figs. available from author). Some cell volume loss was visible in older cells toward the center of the gametophyte. Mean of cell volume loss following a slow increase in NaCl was $3.96 \times 10^{-4} \text{ cm}^{-3} \pm 0.40 \times 10^{-4}$. Mean of cell volume loss in NaCl increment treatment following a pre-incubation in HgCl₂ was $0.80 \times 10^{-4} \text{ cm}^{-3} \pm 0.15 \times 10^{-4}$. DG flux levels significantly dropped after the introduction of HgCl₂.

These results were mirrored in the CaCl₂ increment treatments (Fig. 3). Callus cells visibly plasmolyze when exposed to slow increments in CaCl₂ concentrations (Fig 3A). Mean of cell volume loss in treatments in which CaCl₂ was added in slow increments was $12.18 \times 10^{-4} \text{ cm}^{-3} \pm 6.59 \times 10^{-4}$. Flux in callus cell volume levels significantly dropped following pre-incubation in HgCl₂ (Fig 3B). Mean of cell
Fig. 1. Immunolabeling of Aquaporin-like Protein. (A) ELISA signal from cross-reaction of anti-aquaporin antibody with callus total protein is yellow. Stronger cross-reaction due to greater concentrations of antibody (antibody dilutions of 1:50, 1:100, 1:500, 1:1000, 1:5000, 1:10000) results in more intense coloration and absorbance. Primary antibody only (not shown), secondary antibody only, and preimmune serum controls were negative. The positive control, anti-aquaporin antibody cross-reaction with radish root, is not shown in this image, but is located on the same
volume loss following CaCl₂ treatment with a pre-incubation in HgCl₂ was 2.20·10⁻⁴ cm⁻³ ± 2.80·10⁻⁴. The treatment with pre-incubation in HgCl₂ also exhibited a much smaller amount of variation than the treatment without HgCl₂. Heavy plasmolysis occurred when WG gametophytes were exposed to slow increments of CaCl₂ up to 500 mM (Fig. 3C). Mean of cell volume loss in treatments in which CaCl₂ was added in slow increments was 6.95·10⁻⁴ cm⁻³ ± 6.59·10⁻⁴. WG flux levels significantly dropped after the introduction of HgCl₂ (Fig. 3D). Mean of cell volume loss in CaCl₂ increment treatments were preceded by pre-incubation in HgCl₂ was 1.95·10⁻⁴ cm⁻³ ± 1.23·10⁻⁴. DG gametophytes (Figs. available from author) plasmolyzed at higher concentrations of CaCl₂ (up to 500 mM). Mean of cell volume loss after increasing increments of CaCl₂ was 5.75·10⁻⁴ cm⁻³ ± 2.38·10⁻⁴. DG cell volume flux levels were significantly lower when gametophytes were pre-incubated in HgCl₂. There was also a substantial increase in variation in the response with pre-incubation in HgCl₂. Mean of cell volume loss in gametophytes pretreated with HgCl₂ was 2.65·10⁻⁴ cm⁻³ ± 1.05·10⁻⁴.

Sucrose.—Sucrose was used to test gametophyte response to a pure osmolyte that does not depolarize or hyperpolarize membranes (Fig. 4). Callus cells were desiccated in a treatment of slow sucrose increments up to a total of 500 mM sucrose. Mean of cell volume loss was 9.45·10⁻⁴ cm⁻³ ± 8.86·10⁻⁴. Callus flux levels significantly dropped in treatments that included a pre-incubation in HgCl₂ (Fig. 4B). Mean of callus cell volume loss was 0.09·10⁻⁴ cm⁻³ ± 0.51·10⁻⁴. In addition, variation was greatly reduced when protonemal callus was pre-incubated in HgCl₂. WG gametophytes in a treatment in which sucrose is increased in increments up to 500 mM exhibited some cell volume loss in older cells (Fig. 4C). Mean of cell loss in sucrose increment treatment was 9.62·10⁻⁴ cm⁻³ ± 1.64·10⁻⁴. WG flux levels significantly dropped in sucrose increment treatments that were pre-incubated in HgCl₂ (Fig. 4D). Mean of cell volume loss in these treatments with HgCl₂ pre-incubation was 0.48·10⁻⁴ cm⁻³ ± 3.20·10⁻⁴. Variation in response decreased markedly when gametophytes were pre-incubated in HgCl₂. DG gametophytes (Figs. available from author) experienced some cell volume loss in treatments involving increments in sucrose molarity (up to 500 mM). Mean of DG cell volume loss in sucrose increment treatments was 10.80·10⁻⁴ cm⁻³ ± 54.15·10⁻⁴. DG cell volume loss significantly dropped in sucrose increment treatments that included a pre-incubation in HgCl₂. Variation in gametophyte response was also less in treatments that included HgCl₂ pre-incubation. Mean of cell volume loss in treatments with HgCl₂ pre-incubation was 0.95·10⁻⁴ cm⁻³ ± 2.45·10⁻⁴. plate. (B) ELISA Positive Radish Root Control. Each immunoblot and ELISA contained a radish root control. PIP1 aquaporins express in germinating seeds and new plant roots and freshly germinated radish root reliably produced a strong signal. (C) Immunoblotting procedures resulted in a single band of total protein that cross-reacted with anti-aquaporin antibody. * = approximately 22.4 kD. Secondary only (SO), preimmune serum (PI), and primary only (PO) controls did not result in any cross reaction with the primary or secondary antibodies alone, or with the pre-inoculation serum.
Fig. 2. Flux in Cell Volume of Gametophytes exposed to NaCl Increments. (A) Callus cells visibly plasmolyze when exposed to slow increments in NaCl concentrations. Mean of cell volume loss in treatments in which NaCl was added in slow increments was $6.65 \times 10^{-4} \text{ cm}^{-3} \pm 10.85 \times 10^{-4}$. (B) Following an incubation in HgCl₂, callus flux levels significantly dropped. Cells appear fully intact up to 500 mM NaCl. In addition, variation in the response was greatly reduced. Mean of cell volume flux in NaCl treatments with a HgCl₂ incubation prior to the incremented NaCl treatment was $0.21 \times 10^{-4} \text{ cm}^{-3} \pm 0.47 \times 10^{-4}$. (C) Plasmolysis occurred when WG gametophytes were exposed to slow increases in NaCl. Mean of cell volume loss in treatments in which NaCl was added in slow increments was $4.86 \times 10^{-4} \text{ cm}^{-3} \pm 6.93 \times 10^{-4}$. (D) WG flux levels significantly dropped after the introduction of HgCl₂. Cells appear uncompromised. Standard deviations and variation was similar for both WG treatments. Mean of cell volume flux in NaCl treatments with HgCl₂ incubation prior to the incremented NaCl treatment was $0.55 \times 10^{-4} \text{ cm}^{-3} \pm 3.23 \times 10^{-4}$.

Immediate Immersion Treatments

NaCl₂ and CaCl₂.—To test for differences in flux that could be based on diffusion or aquaporin deactivation, stages were introduced to the same solute treatments but the timing of introduction was changed to immediate immersion in 500 mM solute. Following HgCl₂ pretreatment, all stages exhibited a significant reduction in flux. Callus cells lost cell volume very quickly when immersed in 500 mM NaCl (Fig. 5A). Mean of cell volume loss was $6.30 \times 10^{-4} \text{ cm}^{-3} \pm 3.82 \times 10^{-4}$. Callus pre-incubated in HgCl₂ before immersion remains intact (Fig. 5B). Cell volume was significantly different than those cells treated only with NaCl. Mean cell volume loss in treatment
Fig. 3. Flux in Cell Volume of Gametophytes exposed to CaCl₂ Increments. (A) Callus cells visibly plasmolyze when exposed to slow increments in CaCl₂ concentrations. Mean of cell volume loss in treatments in which CaCl₂ was added in slow increments = 12.18·10⁻⁴ cm⁻³ ± 6.59·10⁻⁴. (B) Flux in callus cell volume levels significantly dropped following pre-incubation in HgCl₂. Mean of cell volume loss following CaCl₂ treatment with a pre-incubation in HgCl₂ = 2.20·10⁻⁴ cm⁻³ ± 2.80·10⁻⁴. The treatment with pre-incubation in HgCl₂ also exhibited a much smaller amount of variation than the treatment without HgCl₂. (C) Heavy plasmolysis occurred when WG gametophytes were exposed to slow increments of CaCl₂ up to 500 mM. Mean of cell volume loss in treatments in which CaCl₂ was added in slow increments = 6.95·10⁻⁴ cm⁻³ ± 6.59·10⁻⁴. (D) WG flux levels significantly dropped after the introduction of HgCl₂. Mean of cell volume loss in CaCl₂ increment treatments were preceded by pre-incubation in HgCl₂ = 1.95·10⁻⁴ cm⁻³ ± 1.23·10⁻⁴.

with pre-incubation in HgCl₂ was 0.26·10⁻⁴ cm⁻³ ± 14.29·10⁻⁴. Variation in responses was also reduced when callus was exposed to HgCl₂ pre-incubation. WG gametophytes also plasmolyzed immediately in 500 mM NaCl (Fig. 5C). Mean of cell volume flux in NaCl immersion was 5.08·10⁻⁴ cm⁻³ ± 0.72·10⁻⁴. Conversely, change in WG cell volume was minimal following treatment that included pre-incubation in HgCl₂ (Fig. 5D). Mean of cell volume flux in treatments that included HgCl₂ pretreatment was 1.85·10⁻⁴ cm⁻³ ± 0.37·10⁻⁴. Variation in flux amounts also significantly decreased in the HgCl₂ pre-incubation treatment. DG gametophytes (Figs. available from author) were visibly affected by immediate immersion in 500 mM NaCl. Mean of cell volume loss in NaCl immediate immersion was 3.10·10⁻⁴ cm⁻³ ± 1.00·10⁻⁴. However, when DG gametophytes were pre-incubated in HgCl₂ prior to the NaCl immersion, there was a decrease in cell volume loss. Mean of cell volume
loss in HgCl₂ pretreated gametophytes was \(0.80 \times 10^{-4} \text{ cm}^{-3} \pm 1.55 \times 10^{-4}\). There was also a substantial increase in variation in the response with pre-incubation in HgCl₂.

CaCl₂ immediate immersion (Fig. 6) results were only slightly different than NaCl results. Callus plasmolyzed heavily upon immediate immersion in 500 mM CaCl₂ (Fig. 6A). Mean of callus cell volume loss in CaCl₂ was \(6.73 \times 10^{-4} \text{ cm}^{3} \pm 2.98 \times 10^{-4}\). However, callus gametophytes that were pretreated in HgCl₂ before immersion in CaCl₂ exhibited little volume flux (Fig. 6B). Mean of callus cell volume loss in treatments with HgCl₂ preincubation was \(0.55 \times 10^{-4} \text{ cm}^{3} \pm 0.50 \times 10^{-4}\). Variation in the responses also decreased in those cells preincubated in HgCl₂. WG gametophyte cells also plasmolyzed heavily in CaCl₂ immediate immersion treatment (Fig. 6C). Mean
Fig. 5. Gametophytes and NaCl Immediate Immersion. (A) Callus cells lost cell volume very quickly when immersed in 500 mM NaCl. Mean of cell volume loss = 6.30·10⁻⁴ cm⁻³ ± 3.82·10⁻⁴. (B) Callus pre-incubated in HgCl₂ before immersion remains intact. Cell volume was significantly different than those cells treated only with NaCl. Mean cell volume loss in treatment with pre-incubation in HgCl₂ = 0.26·10⁻⁴ cm⁻³ ± 14.29·10⁻⁴. Callus cell volume loss significantly dropped after the introduction of HgCl₂. Variation in responses was also reduced when callus was exposed to HgCl₂ pre-incubation. (C) WG gametophytes also plasmolyzed immediately in 500 mM NaCl. Mean of cell volume flux in NaCl immersion = 5.08·10⁻⁴ cm⁻³ ± 0.72·10⁻⁴. (D) Conversely, change in WG cell volume was minimal following treatment that included pre-incubation in HgCl₂. Mean of cell volume flux in treatments that included HgCl₂ pretreatment = 1.85·10⁻⁴ cm⁻³ ± 0.37·10⁻⁴. Variation in flux amounts also significantly decreased in the HgCl₂ pre-incubation treatment.

of cell volume loss in CaCl₂ immediate immersion was 6.77·10⁻⁴ cm⁻³ ± 2.76·10⁻⁴. WG gametophytes that were incubated in HgCl₂ prior to immediate immersion in CaCl₂ showed no visible volume loss (Fig. 6D). Mean of measured volume loss in this treatment was 0.44·10⁻⁴ cm⁻³ ± 0.08·10⁻⁴. DG gametophytes (Figs. available from author) also underwent volume loss following immediate immersion in 500 CaCl₂. Mean of DG volume loss was 3.04·10⁻⁴ cm⁻³ ± 1.14·10⁻⁴. Mean of DG treatments that included pretreatment
in HgCl₂ was $0.49 \times 10^{-4} \text{ cm}^3 \pm 0.16 \times 10^{-4}$. There was also much less variation in the response with respect to volume loss. Overall, callus was the most vulnerable to desiccation from NaCl and CaCl₂ introduction. DG gametophytes were the least affected and visually seemed impervious to NaCl and CaCl₂ perturbation.

Sucrose.—Sucrose introduction following pretreatment with ddH₂O resulted in a mode of very little or no water loss in callus (Fig. 7) and WG stages (Fig. 7). Mean of callus cell volume loss was $0.24 \times 10^{-4} \text{ cm}^3 \pm 0.98 \times 10^{-4}$ (Fig. 7A). Callus cells that were preincubated in HgCl₂ experienced a gain in cell volume (Fig. 7B). Mean change in cell volume gain was $0.10 \times 10^{-4} \text{ cm}^3 \pm 0.48 \times 10^{-4}$. Variation in cell volume was less in treatments that included a
Fig. 7. Gametophytes in Sucrose Immediate Immersion (A) Callus cell moderately plasmolyzed upon immediate immersion in 500 mM sucrose. Mean of callus cell volume loss = $0.24 \cdot 10^{-4} \text{ cm}^{-3} \pm 0.98 \cdot 10^{-4}$. (B) Callus cells immersed in 500 mM sucrose took on cell volume during treatment that included a preincubation in HgCl$_2$. Mean change in cell volume = $0.10 \cdot 10^{-4} \text{ cm}^{-3} \pm 0.48 \cdot 10^{-4}$. Variation in cell volume decreased in treatment that included a preincubation in HgCl$_2$. (C) WG gametophyte cells statistically lost no cell volume in 500 mM sucrose, but that result was highly variable. Mean of cell loss when immediately immersed in sucrose = $0.91 \cdot 10^{-4} \text{ cm}^{-3} \pm 3.00 \cdot 10^{-4}$. (D) WG gametophytes that were pretreated with HgCl$_2$ also showed very little cell volume loss and the variation was quite small in comparison to the treatment with sucrose alone. Mean volume loss in this treatment = $0.93 \cdot 10^{-4} \text{ cm}^{-3} \pm 0.24 \cdot 10^{-4}$.

preincubation in HgCl$_2$ than those preincubated in ddH$_2$O. WG gametophyte cells statistically lost no cell volume in 500 mM sucrose (Fig. 7C), but that result was highly variable. Mean of WG cell loss when immediately immersed in sucrose was $0.91 \cdot 10^{-4} \text{ cm}^{-3} \pm 3.00 \cdot 10^{-4}$. WG gametophytes that were pretreated with HgCl$_2$ also showed very little cell volume loss and the variation was quite small in comparison to the treatment with sucrose alone (Fig. 7D). Mean volume loss in this treatment was $0.93 \cdot 10^{-4} \text{ cm}^{-3} \pm 0.24 \cdot 10^{-4}$. Likewise, when WG gametophytes were pretreated with HgCl$_2$, cells showed very little cell volume loss and the variation was quite small in comparison to the treatment with sucrose alone. Mean volume loss in this treatment was $0.93 \cdot 10^{-4} \text{ cm}^{-3} \pm 0.24 \cdot 10^{-4}$. The
response to 500 mM sucrose in DG gametophyte cells (Figs. available from author) was similar to that of the WG gametophytes. There was some cell volume loss and the results were highly variable. Mean DG cell volume loss was 0.55·10⁻⁴ cm⁻³ ± 5.04·10⁻⁴. When DG gametophyte cells were preincubated with HgCl₂, volume loss dropped dramatically with much less variation. Mean of cell volume loss in this treatment was 0.24·10⁻⁴ cm⁻³ ± 0.76·10⁻⁴.

DISCUSSION

Aquaporin-like proteins were present in all stages of gametophyte growth and play a role in water balance. Overall, HgCl₂ pretreatment inhibited water loss in all stages and even resulted in water uptake in some treatments of thinly walled protonemal cells.

Presence of an Aquaporin-like Protein

Results from ELISA controls, the preimmune serum, primary antibody only control, and secondary antibody only control, were negative. Preimmune serum, which is serum from rabbits prior to inoculation with the polypeptide that correlates with the N-terminus of aquaporins (Chaumont et al., 2000), did not show any aquaporins from plants. The primary antibody bound to a single band only when followed by the secondary antibody and neither antibody bound alone. In addition, the antibody bound strongly (not shown) in ELISA and immunoblotting treatments to radish root homogenate (total protein fraction) as a positive control for the procedure. Germinating radish seeds were used as a positive control since PIP1 aquaporins are found primarily in germinating seeds and young shoots (Chaumont et al., 2000). Cross reaction of anti-PIP1 antibodies and radish antigen produced a strong signal. In all gametophyte samples, signal increased linearly with the concentration of the antibody. Significant levels of signal (2–3 times control) were detected in all stages. Immunoblotting resulted in no detectable bands with the preimmune serum control, primary antibody only control, and secondary antibody only control. Only one band in the range of 28 kD, (Agre et al., 1987) was observed, thereby excluding cross-reactivity with other proteins. Taken together, these data suggest that the antibody bound to only one antigen and the procedure was reasonably free of background signal. They also suggest that a PIP1 aquaporin-like protein is found in all stages of gametophyte growth.

Mercury and Aquaporin Function

PIP1 aquaporin-like protein presence and function in *Cheilanthes lanosa* gametophytes is partially responsible for water balance. Because the primary risk for gametophytes in an arid environment is desiccation (Boullard, 1979; Raven et al., 2003), a test of efflux of water from three types of gametophytes was performed: the first, presumably most vulnerable stage, the protonemata [maintained on agar as callus under red light (Raghavan, 1980; Raghavan et al., 1989)], the more mature gametophyte [maintained on agar and prompted to mature by blue light (Raghavan, 1980; Raghavan et al., 1989), and mature
gametophytes grown in drier conditions [on sand, erratically watered (Diamond and Swatzell, 2003)]. These were exposed to different types of solutes. NaCl and CaCl$_2$ were used to hyperpolarize plasma membranes and sucrose was used as an osmolyte (Lodish et al., 2008). In all solutes, the gametophytes were introduced to up to 500 mM of solutes, either in one large increment or through gradual increments in molarity. Mercury pretreatments in all solutes were adequate to slow or stop water efflux for up to 1 h, even in 500 mM NaCl. Mercury is a direct aquaporin poison (Maggio and Joly, 1995; Heymann et al., 1998). It binds to a cysteine within the water channel and blocks water movement (Preston et al., 1993; Zhang et al., 1993).

Although greater concentrations of HgCl$_2$ could block water movement more aggressively, mercury can also affect other physiological functions in plants (Macey, 1984). The preferred method to show aquaporin function involves the introduction of potential aquaporin mRNA into *Xenopus* oocytes. These oocytes are among the few types of cells that do not express aquaporins. Subsequent production of aquaporins in oocytes prompts water influx and cell disruption (Preston et al., 1992). However, PIP1 aquaporins do not express well in *Xenopus* oocytes (Chaumont et al., 2000). Therefore, a minimum of mercury was used, 1 mM HgCl$_2$ (Carvajal et al., 1996; Maggio and Joly, 1995; Kaldenhoff et al., 1995), which effectively blocked water flow for the duration of the test. Results suggest that aquaporins are responsible for the majority of water flow across *C. lanosa* plasma membranes, since without HgCl$_2$ in the same respective salt or sucrose solutions, cells immediately desiccated.

Cellular Control of Aquaporin-like Protein Function

Mercury treatment, however, can only show the basic function of aquaporins in gametophytes. Beyond basic function, control mechanisms can alter the way aquaporins function (Luu and Maurel, 2005). Changes in plant cell response to environmental perturbation suggest changes in control methods or activity (Luu and Maurel, 2005). For this reason, gametophytes were challenged with desiccation risk in two different ways. In the first set of tests, gametophytes were exposed to slowly increasing osmolalities. Cells were isotonic at 100 mM of NaCl. For perspective, this concentration would completely plasmolyze a tomato plant cell (Maggio and Joly, 1995). In ddH$_2$O, callus cells were rounded with substantial turgor. As the solute concentration increased, however, to what would be considered by most plant cells to be a devastating concentration, cells often lost water. Mercury pretreatment was able to block this loss, suggesting flow through aquaporin-like proteins. Most cells were able to avoid desiccation until they reached approximately 350 mM solute concentration. For example, after ddH$_2$O pretreatment, most callus cells were completely plasmolyzed by the time they reached 500 mM of solute and almost entirely desiccated, with roughly only enough volume for organelles. Desiccation occurred in the final 10–15 min as the environment solution increased beyond 350 mM of solute. However, preincubation in HgCl$_2$ apparently poisoned the major route of water loss. This suggests the presence
of proteins that are aquaporin-like in nature and function but does not test cellular control.

In the second set of tests, the immediate immersion tests, gametophytes were exposed to immediate and violent increases in solutes (Figs. 5–7). Gametophyte response to hyperpolarizing NaCl and CaCl₂ (Figs. 5, 6) were appropriately dramatic. Gametophytes desiccated. Due to the hyperpolarizing nature of the solutes, there should have been no control over an aquaporin-like protein (Luu and Maurel, 2005; Qui et al., 2000). The channels would have opened and cells would have predictably desiccated just as the results showed. However, when presented with a true osmolyte, sucrose, the gametophytes with intact and controllable aquaporin-like proteins should have been able to alter aquaporin-like protein function and shut off water efflux (Luu and Maurel, 2005; Chaumont et al., 2000). Predictably, with immediate immersion in sucrose (Fig. 7), gametophytes maintained water balance. Variation may be due to differences in the ability to defer diffusion or differences in development and physiology induced by their respective microenvironments. Therefore, the immediate immersion tests were able to demonstrate control of aquaporin-like protein function. (Higher plants control aquaporin function through phosphorylation (Maurel, 1997). Blue light also stimulates PIP function and inhibits TIP, which suggests signal transduction and cellular control (Ma et al., 2001).

One exception to the differences between increments and immediate immersion experiments was the treatment of the DG gametophytes with sucrose. The treatment means were generally the same (0.0005) in preincubation with ddH₂O. However, the immediate immersion treatment is revealing. In the immediate immersion treatment, preincubation with ddH₂O, there is a huge variation in response. Yet, with preincubation of HgCl₂, there is little or no efflux. Clearly, the one difference between these two treatments is the flow of water across the membrane. The rapid influx of water may destabilize the cell and force the cell to rapidly adjust internally (Fitter and Hay, 1987; Taiz and Zeiger, 2006). The large amount of variation possibly suggests the occurrence of numerous signal transduction events or vacuolar adjustments that would characterize a stress response (Fitter and Hay, 1987; Taiz and Zeiger, 2006).

Conclusion

In the first stage of the fern life cycle, protonemal cells express aquaporins, but have thin cell walls and no cuticle. These cells are vulnerable to desiccation. They are also at risk in hypotonic situations. The one thing that protonema can control is aquaporin function. When perturbed, protonema can prevent immediate desiccation by disrupting water flow. However, the much slower osmotic diffusion would eventually result in desiccation. It is not surprising, then, that the protonemal stage thrives in sedimentary rock outcrops, which provide a small and continuous amount of water in the optimal amounts for the gametophytes (Dooley and Swatzell, 2002). WG gametophytes are somewhat
better at desiccation resistance in the face of sucrose, but membrane hyperpolarization in NaCl and CaCl₂ still promote rapid desiccation. Admittedly, a Petri dish and agar medium is atypical habitat. The effects on development and function may not be meaningful by themselves. What WG growth does show in conjunction with the DG, more typical growth, is that natural development confers resistance to desiccation. Under long term stress, regardless of the nature of the season, the mature gametophyte in its natural habitat is undeniably impervious to desiccation. This may be the fate of the *C. lanosa* gametophyte generation. The fern’s ability to survive desiccation appears to be limited by that brief but vulnerable protonemal stage and by its very need for aquaporins to manage water balance and uptake. Its mechanism for water uptake can become the pathway of its water loss.

ACKNOWLEDGMENTS

Funding for this study was provided by the Grants and Research Funding Committee of Southeast Missouri State University. The authors thank Dr. Hite, Truman University, and Janese Jones for many helpful discussions.

SUPPLEMENTAL DATA WEBSITE

http://cstl-csm.semo.edu/swatzell/AFJ/diamond2011.htm

LITERATURE CITED

The Effects of Exogenous Cytokinin on the Morphology and Gender Expression of *Osmunda regalis* Gametophytes

GARY K. GREER*, MARGARET A. DIETRICH, JOSEPH A DEVOL, and APRIL REBERT

Grand Valley State University, Biology Department, 1 Campus Drive, Allendale, Michigan 49401

ABSTRACT.—The goal of this study was to determine the function of cytokinin in the morphological development and gender expression of gametophytes of *Osmunda regalis*, a member of Osmundales, sister-group to all other extant leptoporangiate fern families. Gametophytes of *Osmunda regalis* were grown in multispore populations on C-fern nutrient enriched agar containing 0, 1 nM, 1 μM, and 1 mM kinetin. Higher concentrations of exogenous kinetin reduced gametophyte size (area), disrupted correlations observed in the control between rates of apical notch formation and thallus widening, increased the proportions of asexuals and males, decreased the proportion of females in the population, and correspondingly increased male reproductive effort (antheridia per unit thallus area) and decreased female reproductive effort (archegonia per unit thallus area) compared to the control. Low concentrations of exogenous kinetin increased the proportion of females compared to the control. In the control, thalli with a comparatively deep apical notch tended to be wider (relative to their length) and possess a more circular silhouette relative to thalli with a comparatively shallow apical notch; however, these morphological parameters were independent of gametophyte size and gender. Thus, variance in the rate and planes of cell division and patterns of cell expansion and differentiation, most likely genetic in basis, were observed in the control, and the observed effects of exogenous kinetin were more than a simple “push” towards a phenotype already present in the control.

KEY WORDS.—cytokinin, development, kinetin, leptosporangiate, fern, gametophyte, morphology, *Osmunda regalis*, gender expression

Current models of phytohormonal control of seed plant shoot apical meristems (SAM) emphasize the role of cytokinin (Stahl and Simon, 2010; Kurakawa et al., 2007; Kyozuka, 2007; Sablowski, 2007; Hwang and Sakakibara 2006; Kepinski, 2006; Shani et al., 2006; Hudson, 2005; Rashotte et al., 2005; Higuchi et al., 2004). Cytokinin maintains indeterminism and stimulates cell division in SAM and apical dominance and other source sink relationships. Cytokinins are also involved in a wide range of developmental processes including vascular development and senescence (Mok and Mok, 2001), phyllotaxy (Guilini et al., 2004), cotyledon expansion (Stoyanova-Bakalova et al., 2003; Huff and Ross, 1975), and chloroplast maturation (Stetler and Laetsch, 1965), and they are involved in a wide range of responses to abiotic and biotic stimuli, including light responses, drought resistance, ion uptake, pathogen defense and symbiont interaction (Werner and Schmülling, 2009). In contrast, cytokinins have the opposite developmental role in the root apical

*Author for correspondence
meristem, where they control root meristem size via regulation of auxin distribution (which stimulates cell proliferation and maintains totipotency in the root apical meristem (RAM); Stahl and Simon, 2010; Růžička et al., 2009), stimulate elongation and differentiation in the transition zone (Moubayidin et al., 2009; Ioio et al., 2008; Kyozuka, 2007), and stimulate root nodulation (Frugier et al., 2008). Plant reproduction is also governed by SAM behavior; however, mechanisms governing gender expression and reproductive effort (unit investment into reproduction per unit vegetative investment) vary widely among and within plant groups (Tanurdzic and Banks, 2004). In taxa where phytohormones rather than sex-determining genes control gender expression, cytokinins are associated with reproduction (e.g., flowering) and femaleness (Tanurdzic and Banks, 2004; Khryanin, 2002; Lejeune et al., 1988).

In mosses, cytokinins also play a key role in SAM behavior in the gametophyte, governing the transition from a filamentous protonema to a 3-dimensional leafy thallus (Cove et al., 2006). Whereas picomolar concentrations of kinetin initiate the formation of caulonema initials that produce filamentous growth, micromolar concentrations stimulate the assembly of 3-dimensional buds in Funaria hygrometrica Hedwig (Schumaker and Dietrich, 1997; Bopp and Jacob, 1986). This change in morphology was initiated by a dramatic swelling of the initial and a subsequent change from periclinal to oblique and anticlinal divisions. Our search of the literature failed to find studies investigating the role of cytokinins in moss reproduction.

Among the majority of leptosporangiate families, morphological development of the gametophyte proceeds from spore germination through filamentous and spathulate forms culminating in a cordate form that exhibits taxon-specific propensities for subsequent elongation and branching (Nayar and Kaur, 1971). The transition from a spathulate to a cordate form reflects an increase in the rate of anticlinal divisions (i.e., perpendicular to the apical surface), as opposed to periclinal and oblique divisions, in a single plane within the single-celled or pluricellular apical meristem and prolonged meristematic activity by its derivatives (von Aderkas and Cutter, 1983). Formation of the apical notch characteristic of a cordate morphology is reproductively significant in the taxa in which it occurs as it always precedes female gender expression (i.e., production of archegonia). In species with an antheridiogen system, sensitivity to antheridiogen diminishes with the onset of an apical notch. Thus, to the extent that cytokinin influences the rate and orientation of cell division of the apical meristem, it governs morphological form and gender expression in leptosporangiate fern gametophytes.

Cytokinins have been identified in leptosporangiate fern sporophytes (Stirk and van Staden, 2003 and citations therein); however, our search of the literature did not find reports regarding cytokinin functions in these plants. Similarly, we found only two reports regarding the role of cytokinins in leptosporangiate gametophyte development (Menendez et al., 2009; Spiro et al., 2004). Pico and nanomolar concentrations of kinetin (BAP, 6-Benzylaminopurine) induced formation of the notch meristem Ceratopteris richardii Brongn. grown in the dark, resulting in a decrease in thallus length:
width ratio (Spiro et al., 2004), partially overcoming etiolation. Exogenous cytokinin did not accelerate the rate of reproductive maturation in this study; however, the possibility of a delay in reproductive maturity or effects on gender expression and reproductive effort (gametangia per unit thallus area) were not explored. In contrast, micromolar concentrations of exogenous BAP delayed formation of an apical notch and production of gametangia in light-grown gametophytes of Blechnum spicant (L.) Smith (Menendez et al., 2009). In the same study, endogenous levels of six cytokinins were found to be higher in female than in male gametophytes in this species. These observations establish the presence of cytokinins in sporophytes and gametophytes of leptosporangiate ferns, the influence of light on cytokinin response by gametophytes, and that, like seed plants, cytokinins are associated with the maintenance of an apical meristem and female gender expression of gametophytes.

The study we report here investigated the effects of exogenous kinetin on morphological development, gender expression, and reproductive effort in Osmunda regalis L., a member of Osmundales, sister-group to all other extant leptosporangiate ferns (Smith et al., 2006; Pryer et al., 2004). Our goal was to generate information regarding cytokinin that may be useful in reconstructing the evolution of developmental mechanisms in leptosporangiate fern gametophytes.

Materials and Methods

Spores of the fern O. regalis were collected from a minimum of three sporophytes growing in Pigeon Creek Park, Ottawa County, Michigan, and stored in aggregate for 10 days at 3°C. Preliminary experiments using spore sterilization and antibacterials (Nystatin® and streptomycin) resulted in reduced germination and atypical morphology, namely branched rather than a non-branched, globular form. Thus, the green spores of this species were repeatedly centrifugally rinsed, but, not surface sterilized in our study. No bacterial, fungal, or algal contaminations were observed throughout the study.

Concentrations (1 nM, 1 μM, and 1 mM) of kinetin were prepared with C-fern nutrient media (Carolina Biological Supply) and 1.5% agar with the control group containing only nutrient media. Each treatment was replicated five times. Spores were sown at an approximate density of four per cm² and the plates arranged in a fully randomized design under full spectrum lights producing light levels of approximately 29.5 μmol m⁻² s⁻¹ at dish level using a 16 hour light: 8 hour dark regime at 20°C.

Data collection.—Six weeks after sowing, gametophytes were harvested haphazardly from the lowest density neighborhoods within each plate, totaling 30–35 gametophytes per treatment. Although efforts were made to create an even density of gametophytes within each plate, variation occurred. Gametophytes in high-density neighborhoods are subject to competitive interactions resulting in reduced growth rate (Greer, 1993; Huang et al., 2004) and more vulnerable to damage during harvest and were therefore avoided. The harvested gametophytes were fixed with Clarion® mounting
medium as semi-permanent slides. Dissecting microscopes were used under uniform magnification to digitally photograph each gametophyte. Morphological traits were measured in pixels using the trace measurements feature in SigmaScan Pro 5.0 (Fox and Urich, 1993) following the methodology of Greer and Curry (2004) and included thallus area (size), thallus length, thallus width and notch depth. Thallus length extends from the caudal “tail” to the apical notch. Notch depth was measured as an extension of the thallus length line terminated by a line that connects the anterior apex of each thallus lobe. Thallus width was measured as the longest possible line perpendicular to the thallus length line. Silhouettes are shown at the same scale; scale shown with silhouette taken from 1 nM kinetin treatment. Three morphological metrics, thallus length / width ratio (LW), notch depth / thallus length ratio (NDL), and shape factor (SF = circularity = $4\pi \times \text{object area} / \text{perimeter}^2$; 0 = line, 1.0 = a perfect circle) were used to assess developmental status, namely development of an apical notch. As a fern gametophyte develops, its NDL and SF are expected to increase and its LW decrease as a notch-bearing apical meristem develops and, subsequently, widening growth outpaces lengthening growth. Although included here for comparative purposes, Greer et al. (2009) rejected shape factor as a reliable metric of developmental status. Each gametophyte was also scored for the number of antheridia and archegonia present.

Data analyses.—One-way parametric or non-parametric (Kruskal-Wallis) ANOVA were used to test for treatment effects on thallus size and shape. Bonferroni multiple comparisons were used following significant parametric ANOVA and Tamhane’s T2 multiple comparisons were used following significant Kruskal-Wallis ANOVA. Spearman’s ranked correlations were used to compare relationships among thallus size and the three morphological metrics within each kinetin treatment group.

Chi-square tests of independence including all four kinetin concentrations were used to test for treatment effects on gender ratios. When a multi-treatment chi-square was found significant, pair-wise chi-square tests of independence were performed between all six treatments pairings. Parametric and Kruskal-Wallis ANOVA were used to test for treatment effects on numbers of antheridia and archegonia per gametophyte after adjusting for thallus size and each of the three morphological metrics; i.e., size and morphologically-based measures of reproductive effort. Bonferroni and Tamhane’s multiple comparisons were used accordingly.

Assumptions of normality and homogeneity were tested using Kolmogorov-Smirnov’s and Levene’s tests respectively. P-values were considered significant when ≤ 0.05 and marginally significant when between 0.05 and 0.10. When warranted, P-values were adjusted using Bonferroni-Holm’s correction for multiple comparison error rates.

Results

Treatment effects on morphology.—All gametophytes were cordate at harvest. Of the morphological traits assessed, only gametophyte area differed
among kinetin treatments (Table 1). Gametophytes exposed to the highest kinetin concentration (1 mM) were approximately 50% smaller than gametophytes all other treatment groups (Fig. 1a, e–h). Visually consistent but statistically non-significant declines in LW and SF, and to a lesser extent NDL, were observed with increasing kinetin concentration (Fig. 1b–h).

Thallus area did not correlate with the three morphological metrics within any treatment group. Among the three morphological metrics, correlations involving NDL were the strongest and most frequently significant, whereas correlations involving SF were the weakest and least frequently significant (Table 2). Thallus NDL correlated negatively with LW in all treatments (maximum $R^2 = -0.404$ in the 1nM Kinetin treatment) except within the highest (1 mM) kinetin treatment. Similarly, NDL correlated negatively with SF in the control and lowest (1 nM) kinetin treatment (Table 2). LW correlated positively with SF (maximum $R^2 = 0.258$) only in the 1 μM kinetin treatment. Thus, control thalli possessing deeply formed apical notches tended to have wider thallus widths relative to their lengths and more linear silhouettes than thalli with shallowly formed apical notches (Fig. 2), and these relationships weakened (i.e., became non-significant) at higher (1 μM and 1 mM) kinetin concentrations (Fig. 1).

Of the three metrics used to assess the morphology of *O. regalis* gametophytes, NDL correlated more strongly with LW and SF, than either of the latter with one another. A similar observation was made by Greer et al. (2009) in assessing gametophyte morphology of *O. regalis* and *Athyrium filix-femina* (L.) Mertens, thus, NDL appears to be the most reliable of these metrics for assessing the developmental status of leptosporangiate species with gametophytes that form an apical-notch. However, each metric provides a slightly different insight and we recommend using all three metrics when assessing gametophyte morphology and reproductive effort.

Table 1. ANOVA of morphological traits of *Osmunda regalis* gametophytes exposed to 0, 1 nM, 1 μM, and 1 mM concentrations of kinetin.

<table>
<thead>
<tr>
<th>Parametric ANOVA</th>
<th>Groups</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallus Area</td>
<td>Between</td>
<td>3</td>
<td>5.31×10^{11}</td>
<td>40.04</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Within</td>
<td>128</td>
<td>1.32 $\times 10^{10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallus Length / Width (LW)</td>
<td>Between</td>
<td>3</td>
<td>0.006</td>
<td>1.88</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>Within</td>
<td>128</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notch depth / Thallus Length (NDL)</td>
<td>Between</td>
<td>3</td>
<td>0.001</td>
<td>0.039</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>Within</td>
<td>128</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallus Shape Factor (SF)</td>
<td>Between</td>
<td>3</td>
<td>0.006</td>
<td>1.32</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>Within</td>
<td>128</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Morphological measurements (a–d) and representative silhouettes (e–i) of *O. regalis* gametophytes measured in pixels in response to 0 (control), 1 nM, 1 µM, and 1 mM kinetin treatments. Treatments with the same letter are not significantly different (P > 0.05) from one another based on Bonferroni multiple comparison tests (a–d). Linear morphological measurements are shown with the silhouette taken from the control and are described in the methods.

Treatment effects on reproductive traits.—No differences in thallus area, NDL, LW or SF were observed among gender categories within the control or 1 mM kinetin treatments (Table 3). Gender ratios differed only between the highest (1 mM) kinetin treatment group and all lower treatment groups with one exception (Fig. 3). The proportion of asexuals and males in the 1 mM kinetin treatment group increased significantly relative to the control by 48% and 876% (0.48 and 8.76-fold) increase, respectively (Fig. 3). Expected values for males in the lower kinetin treatment groups fell below five therefore results from chi-square tests for this gender should be viewed with caution. Correspondingly, the
TABLE 2. Spearman’s ranked correlation coefficients (R^2) between morphological traits among *Osmunda regalis* gametophytes exposed to 0 (control), 1 nm, 1 μM and 1 mM kinetin treatments. Asterisks indicate P-value ≤ 0.05. N = number of gametophytes per treatment group.

<table>
<thead>
<tr>
<th>Thallus Length / Width (LW)</th>
<th>Notch Depth / Thallus Length (NDL)</th>
<th>Thallus Shape Factor (SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (N = 42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>−0.022</td>
<td>−0.021</td>
</tr>
<tr>
<td>LW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM Kinetin (N = 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>−0.011</td>
<td>0.027</td>
</tr>
<tr>
<td>LW</td>
<td>−0.404*</td>
<td></td>
</tr>
<tr>
<td>NDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 μM Kinetin (N = 32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>−0.230*</td>
<td>−0.003</td>
</tr>
<tr>
<td>LW</td>
<td>−0.325*</td>
<td></td>
</tr>
<tr>
<td>NDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM Kinetin (N = 32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>−0.0007</td>
<td>−0.041</td>
</tr>
<tr>
<td>LW</td>
<td></td>
<td>0.047</td>
</tr>
<tr>
<td>NDL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportions of females in the 1 mM kinetin treatment group decreased significantly (58%) relative to the control (Fig. 3). The only other kinetin treatment with detectable effects on gender expression was the lowest (1 nm) kinetin treatment, where the proportion of females was marginally (P < 1.0) greater than in the control or 1 mM kinetin treatment (Fig. 3). Differences in the proportion of hermaphrodites were non-significant among all treatment groups.

Significant differences in the number of antheridia per antheridium-bearing gametophyte were detected only when corrected for thallus area (Table 4, Fig. 4a–d). Gametophytes in the 1 mM treatment groups possessed more antheridia after correcting for size than in all lower kinetin treatment groups (Fig. 4a). Similarly, gametophytes in the second highest (1 μM) kinetin treatment group possessed more antheridia than those in the control (Fig. 4a).

In contrast, no significant differences in the number of archegonia per archegonium-bearing gametophyte were observed when corrected for thallus area, but were observed when corrected for each of the three morphological metrics (Table 5, Fig. 4e–h). Gametophytes in the 1 mM treatment group possessed fewer archegonia, when corrected for NDL, LW or SF, than those in the control and lower kinetin treatments (Table 5, Fig. 4e–h). Interpretation of gametophyte reproductive effort is straightforward when gametangium production is adjusted for thallus area; however, adjustments using morphological metrics that are themselves fractions (e.g., number of archegonia / (notch depth / thallus length)) require careful interpretation as there are three means by which such a measure of reproductive effort can change in the same
direction. Three comparisons between the morphological and reproductive data support the conclusion that the decline in the 1 mM kinetin treatment in archegonium production when corrected for morphological status reflects a biologically meaningful decrease in reproductive effort: (1) thallus LW declined (visually) in stepwise manner (Fig. 1b), whereas archegonia / LW remained essentially constant among the lower kinetin treatments and declined 51% in the 1 mM kinetin treatment relative to the control (Fig. 4b); (2) NDL showed no visual change with increasing kinetin concentration (Fig. 1c) yet archegonia / NDL declined 46% in the 1 mM treatment relative to the control (Fig. 4c); (3) SF decline began (visually) with the 1 mM kinetin treatment (Fig. 1d), whereas archegonia / SF declined 53%, relative to the control, only at 1 mM kinetin treatment (Fig. 4d).

DISCUSSION

At the higher concentrations used in this study (1 μM and 1 mM), exogenous kinetin reduced the size (area) of *O. regalis* gametophytes, disrupted the
positive correlation between apical notch formation (NDL) and the rate of thallus widening (LW and SF) observed in the control, increased the proportions of asexuals and males and decreased the proportion of females in the population, and correspondingly increased male reproductive effort and decreased female reproductive effort. In the control, thalli with a comparatively deep apical notch tended to be wider (relative to length) and possess a more circular silhouette relative to thalli with a comparatively shallow apical notch; however, morphological status was independent of gametophyte size. These observations reveal variance, potentially genetic in basis, in the prevailing rate and planes of cell division and patterns of cell expansion and differentiation. Variations in gametophyte size and morphology in the control were not associated with differences in gender, therefore the effects of exogenous kinetin treatment on notch development, thallus widening, gender expression, and reproductive effort were more than a simple “push” towards a phenotype already present in the control. In contrast, Huang et al. (2004) observed the following size hierarchy among one year-old gametophytes of Osmundastrum cinnamomeum (L.) C. Presl: female – hermaphrodite – male – asexual, with females three times larger than hermaphrodites. Osmundastrum is sister to all other genera within extant Osmundales (Metzgar et al., 2008). Assuming O. regalis exhibits similar gender-based size hierarchies at the same age and densities as Osmundastrum, latent differences in size or, correspondingly,
growth rate in six week-old gametophytes have on gender expression increase with gametophyte age.

Production of archegonia in *O. regalis*, as with all known cordate-forming leptosporangiate ferns, is preceded by the formation of a pluricellular apical meristem and corresponding apical notch. Reduction of female reproductive effort by exogenous kinetin was largely independent of thallus area and closely associated with measures of cordate morphology (i.e., NDL, LW and SF), reflecting the activity of the apical meristem.

In contrast, the stimulating effect of high levels of exogenous kinetin on the frequency of males and on male reproductive effort (i.e., the rate of antheridium production) was associated with its reducing effect on thallus area. All gametophytes in this experiment were observed only once, six-weeks after spore sowing, and all were cordate, therefore the timing of antheridium development relative to the development of an apical notch is unknown. The sequence of gender expression in Osmundales is poorly known. A male to hermaphrodite sequence was reported for *Osmundastrum cinnamomea* (Huang et al., 2004) which, as noted above is sister to all other extant genera within Osmundales, and *O. regalis* (Klekowski, 1973), and *Todea barbara* (L.) T. Moore (von Aderkas and Cutter, 1983); however, the relationship between apical notch formation and antheridium production was not reported in these studies. In a time-series study of multisporo populations of congeners *O. lancea* Thunb. and *O. japonica* Houtt., Hiyama et al. (1992) observed antheridia only after, or corresponding to, the formation of a cordate
Similarly antheridia were observed only after the formation of an apical notch in a time-series of \textit{O. cinnamomeum} isolates, (Hollingsworth \textit{et al.}, in press). Thus, antheridium production in \textit{Osmundastrum} and at least two species of \textit{Osmunda} appears to be dependent upon the formation of an apical notch. If cordate dependence of antheridium production exists in \textit{O. regalis} as well, it would explain why the effect of exogenous kinetin on antheridium production was independent of NDL, LW or SF. The rate of antheridium production in \textit{O. regalis} also appears to be largely independent of NDL, LW and SF among cordate gametophytes, but is dependent on area as evidenced in the control. This may reflect the fact that antheridia were produced in the basal region, the region most independent of the influence of the apical meristem. As was observed in the control, variations in size and morphology were not associated with differences in gender in the highest (1 mM) kinetin treatment. Thus, the effects of kinetin on female and male reproductive efforts appear to be independent of latent, potentially genetic, differences in the rates of growth and development. The absence of males in the lowest kinetin treatment (1 nM) group and corresponding increase in the proportion of females relative to the control and 1 \textmu{}M kinetin treatment supports the hypothesis that cytokinin effects on gender expression are concentration dependent.

The morphological and reproductive changes in \textit{O. regalis} induced by high levels of exogenous kinetin are most readily explained by one or more of the following effects on the apical meristem: (1) an increase in the ratio of anticlinal versus periclinal-oblique divisions, (2) reduced expansion of derivatives, and (3) a delay in the differentiation of the derivatives.
Greer et al. (2009) also increased the cytokinin: gibberellin ratio in *O. regalis*; however, they did so by lowering endogenous gibberellin levels. Nevertheless, they also observed an increase in the proportion of asexual and male gametophytes, suggesting that the cytokinin: gibberellin ratio may be more important than absolute phytohormone levels in determining the specifics of cell division and differentiation. If a high cytokinin: gibberellin ratio is necessary for production of archegonia, then these observations emphasize that exogenous cytokinins do not precisely mimic the effects of endogenous cytokinins as revealed by the control in the present study.

In contrast to the present study using kinetin, exogenous cytokinin (BAP) accelerated the development of an apical notch and significantly decreased
LW in dark-grown gametophytes of *Ceratopteris richardii* (Spiro et al., 2004). Similarly, exogenous BAP reduced LW and delayed the production of both antheridia and archegonia in *Blechnum spicant* and endogenous levels of six cytokinins were higher in females than in males (Menendez et al., 2009). The different results between these studies of core-leptosporangiate species and the present study of a member of the Osmundales may underscore phylogenetically relevant differences in phytohormonal controls of development.

Acknowledgments

We wish to thank Sheila Blackman and two anonymous reviewers for useful comments on earlier versions of this manuscript.

Literature Cited

Optimization of Protocol for Isolation of Genomic DNA from Leaves of *Selaginella* Species Suitable for RAPD Analysis and Study of their Genetic Variation

Sayantani Das, Maumita Bandyopadhyay, and Subir Bera

Centre of Advanced Studies, Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata- 700019, India

ABSTRACT.—A simple and efficient protocol for isolating genomic DNA from leaves of *Selaginella* spp. (*S. delicatula, S. repanda, S. bryopteris, S. plana, S. monospora*) was developed, involving a modified CTAB protocol of Rogers and Benedich (1994). Increasing the incubation time with the precipitation buffer (1X CTAB) from 1–3 hours to 12–14 hours helped achieve higher quantity genomic DNA from the specimens, when compared with DNA extracted by protocols reported by Dellaporta *et al.* (1983), Murray and Thompson (1980) and Doyle and Doyle (1987). The DNA yield ranged from 846–1636 μg/ml from fresh and herbaria-preserved leaf samples. The DNA samples were found suitable for genetic diversity analysis with Random Amplified Polymorphic DNA (RAPD) markers. Nine random primers (OPA A17, OPB 4, OPB13, OPC 2, OPC 11, OPD 5, OPG 2, OPG 19 and OPK 10) were studied, of which two primers (OPD 5 and OPG 2) yielded reproducible amplification profile of polymorphic fragments.

KEY WORDS.—DNA extraction, RAPD, *Selaginella*, modified protocol

Selaginella (spike moss) is an enigma in the plant kingdom. At present only one genus is recognized in the Selaginellaceae, i.e., *Selaginella* (Family Selaginellaceae, Order Selaginellales, Class Lycopsida). The genus *Selaginella* is cosmopolitan in distribution and contains approximately 700 species that include temperate, tropical, frost-tolerant arctic, and drought-tolerant desert species. Such extremes are very rarely found in the same genus, and hence the family Selaginellaceae has been treated differently and sub-divided into myriad taxa by researchers (Spring, 1850; Braun, 1857; Baker, 1883; Hieronymus, 1901; Walton and Alston, 1938; Jermy, 1986).

Selaginella shows morphological variation within species and as such it is difficult to distinguish species depending on traditional morphology only. Thus, researchers have concentrated on molecular phylogenetic analysis to gain information about its evolutionary relationships. A recent molecular phylogenetic analysis of the genus has revealed that rates of molecular evolution among species are remarkably high, including when compared to the angiosperm families (Korall and Kenrick, 2004). Although many subtle morphological and developmental differences exist between species, few of these differences are phylogenetically useful markers for classifying the species in a way that is consistent with molecular data (Korall and Kenrick

* Corresponding author: berasubir@yahoo.co.in
2002, 2004). In this perspective, studies involving isolation and characterization of DNA are very useful, since they open up the possibility for detection of an evolutionary pattern that implies both morphological and genetic changes. Molecular marker based phylogenetic studies (e.g., RAPD, ISSR, SNP, etc.) have been utilized in complementing and supplementing morpho-taxonomy in many cases. The success of these procedures relies on inexpensive, rapid and simple DNA extraction methods (Weishing et al., 1995), as they require large amounts of high quality genomic DNA.

The main aim of the present study is to evaluate different protocols of DNA isolation and to standardize a protocol for obtaining better DNA yield and amplification quality for RAPD analysis from milligram amounts of living and herbarium Selaginella leaf specimens. The use of dried herbarium specimens is essential due to the unavailability of suitable quantity of required plant material from the living plant materials. The detriment is that satisfactory quantity and quality of DNA from herbarium specimens cannot be obtained due to the rapid degradation of plant material during preservation. DNA isolation from dried specimens usually requires some modifications to frequently used protocols (Rogers, 1994) to ensure quality DNA extraction from even very small amounts of dry herbarium tissues are available. Here we report a DNA isolation protocol from milligram amounts of both living and herbarium plant materials that has been standardized and proved to be suitable for RAPD analysis.

Materials and Methods

Sample collection.—Selaginella samples including S. delicatula (Desv. ex Poir) Alston, S. repanda (Desv. ex Poir) Spring, S. bryopteris (L.) Baker, S. plana (Desv. ex Poir) Hieron., S. monospora Spring were collected from the Darjeeling district (West Bengal) and Nainital (Uttarakhand) regions of India. Herbarium specimens were obtained from the Calcutta University Herbarium (CUH).

Genomic DNA isolation.—Genomic DNA was extracted from fresh and dried leaf samples using several reported protocols, including those of Dellaporta et al. (1983) (Protocol 1); Doyle and Doyle (1987) (Protocol 2); Murray and Thompson (1980) (Protocol 3); Rogers and Benedich (1994) (Protocol 4). A modified Rogers and Benedich (1994) protocol was devised to increase DNA yield. The essential modification is an increase in the incubation time which involves incubation of supernatant containing DNA after a second chloroform-isoamyl alcohol extraction with 1X CTAB overnight, instead of 1–3 hours as reported in the original protocol, and an additional step of RNase treatment was added, when required.

The modified protocol of Rogers and Benedich, 1994 (Protocol 5) that was standardized is as follows: fresh leaves (0.5 g) frozen at −20°C for 7–15 days or herbarium or dried leaves of Selaginella (0.2 g) were freeze dried in liquid nitrogen and crushed in a mortar and pestle. The crushed powder was transferred to a 50 ml tube and mixed with 2X CTAB extraction buffer (2% CTAB, 100 mM Tris, 20 mM EDTA, 1.4 M NaCl, 1% PVP) with
β-mercaptoethanol, warmed at 55°C before use. The mixture was incubated while shaking at 66°C for 45 minutes. Then an equal volume of chloroform:isoamyl alcohol (24:1) was mixed and gently shaken for 10 minutes at room temperature. The mixture was centrifuged for 20 minutes at 10,000 rpm and the supernatant was recovered to which 1/10 volume of 10% CTAB warmed at 55°C was added. Equal volume of chloroform:isoamyl alcohol (24:1) was added again and mixed gently. The mixture was centrifuged at 10,000 rpm for 20 minutes. The supernatant was pipetted into a new tube and 2 volumes of 1X CTAB were added to it; after mixing, it was incubated overnight at room temperature. The mixture was centrifuged for 20 minutes at 10,000 rpm. The pellet thus obtained was dissolved in high salt TE to which 2 volumes of ice-cold ethanol were added and the mixture was incubated overnight at -20°C, and later centrifuged at 10,000 rpm for 10 minutes. The pellet was washed with cold 80% ethanol before centrifugation for 5 minutes at 10,000 rpm. The pellet containing nucleic acids thus obtained was dried and redissolved in 30 µl TE and stored.

In the case of DNA extraction from fresh Selaginella specimens, an additional step of RNase treatment was required. The RNase treatment was not an essential step for the herbarium specimens as RNA interference is absent in the case of preserved specimens.

The extracted genomic DNA was tested for purity index (A_{260}/A_{280} absorbance ratio) on UV-VIS Spectrophotometer and for size, purity and integrity on 1% agarose gel at 80V for 40 minutes.

Polymerase Chain Reaction.—PCR reactions for RAPD analysis were performed in a 25 µl volume containing 100 ng genomic template DNA, 2.5 µl of reaction buffer, 100 mM dNTP mix, 2.5 ng primer (random primer, Operon Technologies), and 3 U/µl Taq polymerase. Amplification was performed in a Gradient Thermal Cycler (Eppendorf). The reaction mixtures were amplified in an initial step of 94°C for 3 min and then subjected to 35 cycles of the following program: 94°C for 1 min, 37°C for 1 min, 72°C for 1 min. After the last cycle, the temperature was maintained at 72°C for 8 min. Amplified DNA was electrophoresed in a 1.2% agarose gel containing ethidium bromide and photographed on a UV transilluminator. Amplification products generated by a few decamer primers from OP series (Operon Technologies) are presented in the current study.

Results

When a modified version of the original CTAB protocol (Rogers and Benedich, 1994) was used for the extraction of DNA from the dried herbarium and living leaves of different species of Selaginella, DNA yield and quality was significantly increased. The extraction protocol of Dellaporta et al. (1983) and Doyle and Doyle (1987) did not yield quantifiable amounts of genomic DNA, while the extraction protocol of Murray and Thompson (1980) yielded comparatively less quantifiable DNA, which was not suitable for RAPD analysis. The spectrophotometric results for the five different species of
Selaginella obtained using the original protocols of Rogers and Benedich (1994), Murray and Thompson (1980) and the modified protocol of Rogers and Benedich (1994) are given in Table 1.

For RAPD analysis, initial PCR amplification of genomic DNA from the five species of Selaginella was done. Among the nine random primers tried, two primers from OP series (OPD 5 and OPG 2) were selected for RAPD analysis which could amplify the template DNA from the five leaf samples of Selaginella using PCR. From the study we obtained a number of RAPD bands from two different primers for the samples of Selaginella studied (Table 2).

DISCUSSION

A cost effective DNA extraction procedure greatly facilitates genetic diversity analysis. The present study demonstrates that the DNA extraction procedure significantly affects yield and quality in Selaginella, as well as the

Table 1. Yield of genomic DNA measured by quantity and purity index of Selaginella obtained from five different species using different protocols.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity (µg/ml)</td>
<td>Purity index (A260/A280 ratio)</td>
<td>Quantity (µg/ml)</td>
</tr>
<tr>
<td>Selaginella delicatula</td>
<td>1164</td>
<td>1.84</td>
<td>486</td>
</tr>
<tr>
<td>Selaginella bryopteris</td>
<td>924</td>
<td>1.69</td>
<td>390</td>
</tr>
<tr>
<td>Selaginella plana</td>
<td>1836</td>
<td>2.01</td>
<td>696</td>
</tr>
<tr>
<td>Selaginella monospora</td>
<td>846</td>
<td>1.71</td>
<td>318</td>
</tr>
<tr>
<td>Selaginella repanda</td>
<td>912</td>
<td>1.87</td>
<td>450</td>
</tr>
</tbody>
</table>

Table 2. Primers used in RAPD analysis.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Total number of amplified bands</th>
<th>Total number of polymorphic bands</th>
<th>Percentage of polymorphic bands (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA A17</td>
<td>5'-GAG CCC GACT - 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPB 4</td>
<td>5'-GGA CTG GAGT - 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC 11</td>
<td>5'-AAA GCT GCC C - 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPD 5</td>
<td>5'-TGA GCC GAC A - 3'</td>
<td>26</td>
<td>21</td>
<td>84.7</td>
</tr>
<tr>
<td>OPG 2</td>
<td>5'-GGC ACT GAG G- 3'</td>
<td>19</td>
<td>9</td>
<td>47.3</td>
</tr>
<tr>
<td>OPG 19</td>
<td>5'-GTC AGG GCA A- 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPK 10</td>
<td>5'-GTG CA A CGT G - 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC 2</td>
<td>5'-GTG AGG CGT C - 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPB 13</td>
<td>5'-TTC CCC CGC T- 3'</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
efficiency of RAPD amplification. Upon gel electrophoresis a clear continuous band of DNA was obtained showing that the quality of DNA had improved and was consistently suitable for PCR amplification for RAPD analysis (Fig. 1). After PCR optimization for RAPD analysis, the generated amplification products were found to be of good quality and could be used to discriminate the genetic polymorphisms present in different species of Selaginella used in the study. Yield of genomic DNA was increased by certain modifications of the protocol. The modification involved increasing the time of incubation in 1X CTAB buffer. CTAB being a cationic detergent, it can form a CTAB–nucleic acid precipitate at room temperature, when the salt concentration is lower than 0.5 M. We observed that increasing the incubation time of the chloroform-isoamyl alcohol extract in precipitation buffer (1X CTAB solution) may cause more nucleic acids to be selectively precipitated, thus increasing the net yield.

We also observed that, in general, the Rogers and Benedich (1994) protocol yielded higher quantities of DNA compared to the protocol of Murray and
Fig. 2. Graphical representation showing the quantity of DNA obtained from different protocols for the five different species of Selaginella.

Fig. 3. Graphical representation showing the purity index of DNA obtained from different protocols for the five different species of Selaginella.
Thompson (1980). The modified Rogers and Benedich (1994) protocol, on the other hand, yielded better quantity (2–3 times more) and quality genomic DNA than the original protocol of Rogers and Benedich (1994) (Fig. 2 and Fig. 3). The isolation protocols of Dellaporta et al. (1983) and Doyle and Doyle (1987) did not yield quantifiable amounts of genomic DNA.

The present study revealed that though the modified protocol of Rogers and Benedich (1994) required longer time (nearly three days) than the other methods followed, better quality DNA was extracted using this protocol (Fig. 1). Since the quantity and purity of extracted genomic DNA plays a crucial role for analysis of molecular diversity and optimization of different parameters for PCR (Weeden et al., 1992; Staub et al., 1996), the modified DNA extraction protocol of Rogers and Benedich proved to be most useful, as both the quality and quantity of genomic DNA significantly increased, yielding better results in RAPD-PCR analyses compared to the original DNA extraction protocol of Rogers and Benedich (Fig. 4 a and b).

Further analyses using more RAPD primers are necessary to obtain molecular markers for distinguishing the different subgenera of Selaginella, which would give valuable information regarding genetic diversity of Selaginella species.
ACKNOWLEDGMENTS

The authors wish to thank the Programme Coordinator, CAS and the Head, Department of Botany, University of Calcutta, for facilities provided. The authors would also like to acknowledge UGC-UPE for financial assistance. Thanks are also due to Prof. Radhanath Mukhopadhyay, Department of Botany, University of Burdwan for his assistance in identifying the plant species.

LITERATURE CITED

Molecular Evidence on the Origin of *Osmunda × mildei* (Osmundaceae)

C. Tsutsumi*, Y. Hirayama, and M. Kato
Department of Botany, National Museum of Nature and Science, Amakubo, Tsukuba 305-0005, Japan
Y. Yatabe-Kakugawa
Botanical Gardens, Graduate School of Science, the University of Tokyo, Hakusan, Tokyo 112-0001, Japan
S.-Z. Zhang
Shenzhen Fairylake Botanical Garden, Luohu District, Shenzhen, Guangdong, China 518004

ABSTRACT.—The southern Chinese *Osmunda × mildei* has been suggested to be an intersubgeneric hybrid, i.e., *O. japonica* (subgenus *Osmunda*) × *O. angustifolia* (subgenus *Plenasium*) or *O. japonica* × *O. vachellii* (subgenus *Plenasium*). These interpretations were based on morphological, cytological, and/or chloroplast DNA data, yet the parents of the hybrid remained unclear. Molecular phylogenetic relationships inferred here from chloroplast *rbcL* sequences and three nuclear DNA markers show that *O. × mildei* is most likely a hybrid between the paternal *O. japonica* and the maternal *O. vachellii*.

KEY WORDS.—EST, intersubgeneric hybrid, *Osmunda japonica*, *Osmunda × mildei*, *Osmunda vachellii*, *rbcL*.

The genus *Osmunda* of the leptosporangiate fern family Osmundaceae has natural hybrids (Kato, 2009; Tsutsumi *et al.*, 2011). One such is *Osmunda × mildei* C.Chr. (= *O. bipinnata* Hook., a later homonym of *O. bipinnata* L.), which nearly became extinct in its known range in Hong Kong. However, this hybrid was recently found in Shenzhen, Guangdong, and Mt. Qiyun, Jiangxi (Zhang *et al.*, 2008), and less than 10 individuals are known. It was also found in Zhangjiajie, Hunan (Y.-H. Yan, pers. comm.). It can propagate via spores in experimental conditions (J.-F. Yang, unpubl. data), but it is uncertain if the individuals were derived from spore propagations or from independent formations of the hybrid. *Osmunda × mildei* is characterized by subcoriaceous, bipinnate-bipinnatifid leaves with round, entire pinnules, and fertile pinnae inserted below the middle of the leaf. For the origin of *O. × mildei*, two possibilities were proposed (Fig. 1). Based on karyological and morphological analyses, He *et al.* (2006) suggested that *O. × mildei* is a hybrid of *O. japonica* Thunb. (subgenus *Osmunda*) and *O. angustifolia* Ching (subgenus *Plenasium*). Zhang *et al.* (2008) observed the absence of chromosome pairings at meiosis and resulting abortive spores in *O. × mildei*, and suggested that it is a sterile F1 hybrid, but argued that the parents were *O.*

*Corresponding author: (e-mail: tsutsumi@kahaku.go.jp)
japonica and O. vachellii Hook. (subgenus Plenasium), because O. vachellii co-occurs with O. ×mildei, but O. angustifolia does not occur in some of the localities of O. ×mildei (Fig. 2). Gou et al. (2008) also proposed that O. vachellii is the maternal progenitor of O. ×mildei, based on inferences from chloroplast DNA sequence data. Under either parentage hypothesis O. ×mildei is likely an intersubgeneric hybrid between the subgenera Osmunda and Plenasium.

There are three more known hybrids reported in Osmundaceae (Kato, 2009). Eastern North American O. ×ruggii Tryon is O. regalis L. (subgenus Osmunda) × O. claytoniana L. (subgenus Claytosmund) (Tryon, 1940; Wagner et al., 1978; Whetstone and Atkinson, 1993; Li and Haufler, 1994). Japanese O. ×nipponica Makino is O. japonica (subgenus Osmunda) × O. claytoniana (subgenus Claytosmunda) (Ito, 1964), but Sugimoto (1979) suggested that it is an intergeneric hybrid, i.e., O. japonica × Osmundastrum cinnamomeum (L.) C.Presl. Neither is given molecular evidence. Finally, Japanese O. ×intermedia (Honda) Sugim. is O. japonica × O. lancea Thunb. (both in subgenus Osmunda; Tagawa, 1959; Iwatsuki, 1995; Tatuno and Yoshida, 1966; Yatabe et al., 2009).
Materials.—Samples of three species of subgenus Plenasium (O. vachellii, O. banksiiifolia (C.Presl) Kuhn, O. angustifolia), the putative intersubgeneric

The evidence offered to support the parentage of O. × mildei in previous studies is inconclusive, because it lacked nuclear sequence data. Combining nuclear and chloroplast DNA data are useful to identify a maternal and a paternal parent. This study examines the aforementioned alternative origins of the hybrid, based on chloroplast rbcL sequences and three nuclear DNA sequences.

Materials and Methods

Materials.—Samples of three species of subgenus Plenasium (O. vachellii, O. banksiiifolia (C.Presl) Kuhn, O. angustifolia), the putative intersubgeneric
hybrid *O. × mildei*, one species of subgenus *Claytomsunda* (*O. claytoniana*), *Osmundastrum cinnamomeum*, and *Todea barbara* (L.) T.Moore, along with three species of subgenus *Osmunda* (*O. japonica*, *O. lancea*, *O. regalis*), were collected in the field or botanical gardens. The sources of materials used are shown in Table 1.

Sequencing of chloroplast and nuclear DNA.—Leaf fragments were used for molecular analysis. DNA was extracted from fresh or silica-gel-dried material using a QIAGEN DNeasy Mini Kit (QIAGEN, Valencia, CA) following the manufacturer’s instruction. Three nuclear DNA markers (EST_L058, EST_L110, EST_L258) selected from the expressed sequence tag library developed by Yatabe *et al.* (2009) and the chloroplast locus *rbcL* were analyzed. Primers for amplification and sequencing, and detailed information on the three nuclear markers are shown in Table 2 and Table 3, respectively. PCR was performed using a Perkin-Elmer 9700 DNA thermal cycler (Applied Biosystems, Foster, CA) with *Ex Taq* DNA polymerase (TaKaRa Bio, Tokyo, Japan) and Ampdirect Plus (Shimadzu, Kyoto, Japan) in 35 denaturation, annealing, and elongation cycles (30 sec at 94°C; 30 sec at 50°C for the *rbcL* and 58°C in the three nuclear markers; and 90 sec at 72°C) with a final elongation step (7 min at 72°C). The PCR products were purified with ExoSAP-IT (USB corporation, Cleveland, OH) following the manufacturer’s instructions. Sequencing was conducted using an ABI PRISM 3130xI Genetic Analyzer (Applied Biosystems). The raw sequence data were assembled using Seqman II (Dnastar, Madison, WI). For the sample of *O. × mildei*, PCR of the nuclear DNA markers was performed with PrimeSTAR Max DNA polymerase (TaKaRa Bio) in 35 cycles (10 sec at 98°C, 5 sec at 55°C and 5 sec at 72°C). The PCR products were cloned using a pGEM-T Vector System I (Promega, Madison, WI) and at least 10 clones were sequenced. Minor variants from single clones, presumably sequencing errors, were observed. Therefore a consensus sequence was used for each allele type; the differences between each consensus sequence and the original clones are shown in Table 4. The assembled sequences were aligned by Clustal X program (Thompson *et al.*, 1997) and then aligned manually.

Molecular phylogeny.—Phylogenetic analyses were performed by maximum parsimony (MP) and Bayesian analysis. Registered sequences of Osmundaceae in Genbank were added into the analyses (see Table 1). Maximum parsimony (MP) inference was conducted with PAUP* 4.0b10 (Swofford, 2002). The bases that could not be identified were treated as unknown (N), and gaps were treated as missing data. All characters were equally weighed and heuristic searches were conducted with 1000 random addition replicates involving TBR branch swapping. Bootstrap values were calculated from 1000 pseudoreplicates, each with 100 random additions. For the Bayesian analyses, MrModeltest 2.0 (Nylander, 2004) was used to determine the nucleotide substitution model. Bayesian searches were conducted by MCMC with two independent sets of four chains, each run for ten million generations, sampling every 100 generations by MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). The nucleotide model selected was: *rbcL*, GTR + I + G; EST_L058, HKY + I; EST_L110, GTR + I; EST_L258, GTR + I. The program
Table 1. Materials used in this study. * shows Genbank accession numbers of each locus.

<table>
<thead>
<tr>
<th>Genus, subgenus, species</th>
<th>Sample ID</th>
<th>Source and voucher</th>
<th>rbcL*</th>
<th>EST_L058*</th>
<th>EST_L110*</th>
<th>EST_L258*</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. × mildei C.Chr.</td>
<td></td>
<td>Cult. in Shenzhen Fairylake Botanical Garden (originated from China, Guangdong, Shenzhen)</td>
<td>AB672746</td>
<td>See Table 4</td>
<td>See Table 4</td>
<td>See Table 4</td>
</tr>
<tr>
<td>Osmunda subg. Claytoniana</td>
<td></td>
<td>Cult. in Tsukuba Botanical Garden (originated from Japan); C. Tsutsuji s.n. (TNS)</td>
<td>AB672747</td>
<td>AB672752</td>
<td>AB672790</td>
<td>AB672828</td>
</tr>
<tr>
<td>O. claytoniana L.</td>
<td>CL1</td>
<td>China, Yunnan, Gongshan, Chichi; L.-Y. Kuo 9485 (TAIF)</td>
<td>AB639186</td>
<td>AB672753</td>
<td>AB672791</td>
<td>AB672829</td>
</tr>
<tr>
<td></td>
<td>CL2</td>
<td>Cult. in Missouri Botanical Garden; G. Yatskievich 99-0302</td>
<td>AB024950</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CLg1</td>
<td>Cult. in Botanical Gardens, Nikko, University of Tokyo; S. Nemoto 99-307</td>
<td>AB024951</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Osmunda subg. Osmunda</td>
<td></td>
<td>Cult. in Tsukuba Botanical Garden (originated from Japan); C. Tsutsuji s.n. (TNS)</td>
<td>AB494711</td>
<td>AB672754</td>
<td>AB672792</td>
<td>AB672830</td>
</tr>
<tr>
<td>O. japonica Thunb.</td>
<td>J1</td>
<td>Japan, Miyazaki Pref., Kobayashi; G. Kokubogata GK9416 (TNS)</td>
<td>AB494714</td>
<td>AB672755</td>
<td>AB672793</td>
<td>AB672831</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>Japan, Kagoshima Pref., Amami Island, Mt. Yuwan; M. Kato et al. s.n. (TNS:764134)</td>
<td>AB494712</td>
<td>AB672756</td>
<td>AB672794</td>
<td>AB672832</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>China, Fujian, Mt. Wuyi; A. Ebihara s.n. (TNS:762111)</td>
<td>AB494712</td>
<td>AB672757</td>
<td>AB672795</td>
<td>AB672833</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>China, Yunnan, Gongshan, Chichi; L.-Y. Kuo 9486 (TAIF)</td>
<td>AB639162</td>
<td>AB672758</td>
<td>AB672796</td>
<td>AB672834</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>Bhutan, Sha-ngawang; S. Matsumoto W.G.M.124 (TNS)</td>
<td>AB494711</td>
<td>AB672759</td>
<td>AB672797</td>
<td>AB672835</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>India, Meghalaya State, Shillong Peak ridge, by site of ruined "Peak Lodge"; C. R. Fraser-Jenkins s.n. (TNS:740377)</td>
<td>AB639163</td>
<td>AB672760</td>
<td>AB672798</td>
<td>AB672836</td>
</tr>
<tr>
<td></td>
<td>J8</td>
<td>India, Central Himalaya, from Fern Garden, Department of Botany, Government Postgraduate College, Pithoragarh, 262502. (Originated from Champawat); C. R. Fraser-Jenkins s.n. (TNS:777785)</td>
<td>AB639164</td>
<td>AB672761</td>
<td>AB672799</td>
<td>AB672837</td>
</tr>
<tr>
<td></td>
<td>Jg1</td>
<td>Japan, Shizuoka Pref.; Y. Yatake 99-0303</td>
<td>AB024947</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. lancea Thunb.</td>
<td>L1</td>
<td>Cult. in Tsukuba Botanical Garden (transplanted from Shizuoka Pref.); C. Tsutsuji s.n. (TNS)</td>
<td>AB494711</td>
<td>AB672762</td>
<td>AB672800</td>
<td>AB672838</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>Japan, Kochi Pref.; A. Ebihara et al., KC2007-1408 (TNS:766627)</td>
<td>AB494713</td>
<td>AB672763</td>
<td>AB672801</td>
<td>AB672839</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>Japan, Miyazaki Pref.; T. Minamitani s.n. (TNS)</td>
<td>AB494711</td>
<td>AB672764</td>
<td>AB672802</td>
<td>AB672840</td>
</tr>
<tr>
<td></td>
<td>Lg1</td>
<td>Cult. in Botanical Gardens, Koishikawa, University of Tokyo; K. Hirai 99-0305</td>
<td>AB024952</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Genus, subgenus, species</td>
<td>Sample ID</td>
<td>Source and voucher</td>
<td>rbcL*</td>
<td>EST_L058*</td>
<td>EST_L110*</td>
<td>EST_L258*</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>O. regalis L.</td>
<td>R1</td>
<td>India, Kerala, Kozhikode Dist., Vellarimala; A. K. Pradeep 73207 (TNS:771612)</td>
<td>AB639165</td>
<td>AB672765</td>
<td>AB672803</td>
<td>AB672841</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>India, Karnataka, Shimoga Dist., Kemmanagundi near Shimoga; J. Murata & H. Murata s.n. (TI)</td>
<td>AB639166</td>
<td>AB672766</td>
<td>AB672804</td>
<td>AB672842</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>India, Kerala, Kozhikode Dist., Vellarimala; A. K. Pradeep 86941 (TNS)</td>
<td>AB639167</td>
<td>AB672767</td>
<td>AB672805</td>
<td>AB672843</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>India, Pachmarhi (cult. in National Botanical Research Institute Botanic Garden); M. Kato s. n. (TNS)</td>
<td>AB639168</td>
<td>AB672768</td>
<td>AB672806</td>
<td>AB672844</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>Cult. in the home garden of H. P. Nooteboom in Netherlands</td>
<td>AB639169</td>
<td>AB672769</td>
<td>AB672807</td>
<td>AB672845</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>Netherlands, 12 km S of Venlo, Limburg prov.; P. Hovenkamp s.n. (L)</td>
<td>AB639170</td>
<td>AB672770</td>
<td>AB672808</td>
<td>AB672846</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>Germany, Rhineland-Palatinate, Palatinate Forest Biosphere Reserve, 15 km S of Kaiserslautern; M. Zink s.n.</td>
<td>AB639171</td>
<td>AB672771</td>
<td>AB672809</td>
<td>AB672847</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>Macedonia, Strumica, Kolesino, Orman; A. Tuji et al. s.n. (TNS:737424)</td>
<td>AB639172</td>
<td>AB672772</td>
<td>AB672810</td>
<td>AB672848</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>Macedonia, Strumica, Kolesino, Orman; A. Tuji et al. s.n. (TNS:737429)</td>
<td>AB639173</td>
<td>AB672773</td>
<td>AB672811</td>
<td>AB672849</td>
</tr>
<tr>
<td></td>
<td>R10</td>
<td>Cameroon, Mbalmano, Ebogo, Nyong River; M. Kato et al. CMR-141 (TNS)</td>
<td>AB639174</td>
<td>AB672774</td>
<td>AB672812</td>
<td>AB672850</td>
</tr>
<tr>
<td></td>
<td>R11</td>
<td>Madagascar, Perinet, Andasibe; T. Nakamura s.n. (TNS)</td>
<td>AB639175</td>
<td>AB672775</td>
<td>AB672813</td>
<td>AB672851</td>
</tr>
<tr>
<td></td>
<td>R12</td>
<td>Madagascar, Perinet, Vohmana; T. Nakamura s.n. (TNS)</td>
<td>AB639176</td>
<td>AB672776</td>
<td>AB672814</td>
<td>AB672852</td>
</tr>
<tr>
<td></td>
<td>R13</td>
<td>USA, New York, N of New York City; R. Moran 8179</td>
<td>AB639177</td>
<td>AB672777</td>
<td>AB672815</td>
<td>AB672853</td>
</tr>
<tr>
<td></td>
<td>R14</td>
<td>USA, Indiana, Laporte Co., Amber Flatwoods Nat. Pres.; G. Yatskievych 07-91 (TNS:771606)</td>
<td>AB639178</td>
<td>AB672778</td>
<td>AB672816</td>
<td>AB672854</td>
</tr>
<tr>
<td></td>
<td>R15</td>
<td>USA, Missouri, Reynolds Co., Maury Pond; G. Yatskievych 07-16 (TNS:771608)</td>
<td>AB639179</td>
<td>AB672779</td>
<td>AB672817</td>
<td>AB672855</td>
</tr>
<tr>
<td></td>
<td>R16</td>
<td>USA; L.-Y. Kuo s.n. (TNS)</td>
<td>AB639180</td>
<td>AB672780</td>
<td>AB672818</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R17</td>
<td>Mexico; R. C. Monica s.n.</td>
<td>AB639181</td>
<td>AB672781</td>
<td>AB672819</td>
<td>AB672856</td>
</tr>
<tr>
<td></td>
<td>R18</td>
<td>Argentina, Misiones, Monte Carlos, Colonia Guatambu, Bafiado junto al arroyo Caraguatay; E. I. Meza Torres, et al. No. 1243 (TNS)</td>
<td>AB639182</td>
<td>AB672782</td>
<td>AB672820</td>
<td>AB672857</td>
</tr>
<tr>
<td>Genus, subgenus, species</td>
<td>Sample ID</td>
<td>Source and voucher</td>
<td>(rbcL^*)</td>
<td>(EST_L058^*)</td>
<td>(EST_L110^*)</td>
<td>(EST_L258^*)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Osmunda subg. Plenasiun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. angustifolia Ching</td>
<td></td>
<td>Cult. in Shenzhen Fairylake Botanical Garden</td>
<td>AB672748</td>
<td>AB672783</td>
<td>AB672821</td>
<td>AB672858</td>
</tr>
<tr>
<td>O. banksiiifolia</td>
<td>B1</td>
<td>Cult. in Tsukuba Botanical Garden (originated from Okinawa Pref., Japan)</td>
<td>AB024956</td>
<td>AB672784</td>
<td>AB672822</td>
<td>AB672859</td>
</tr>
<tr>
<td>O. javanica Blume</td>
<td>V1</td>
<td>Cult. in Shenzhen Fairylake Botanical Garden</td>
<td>AB672749</td>
<td>AB672785</td>
<td>AB672823</td>
<td>AB672860</td>
</tr>
<tr>
<td>O. vachellii Hook.</td>
<td>Vg1</td>
<td>Cult. in UKM, Malaysia; N. Murakami 98-M13</td>
<td>AB024954</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leptopteris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. hymenophyllum</td>
<td></td>
<td>New Zealand; M. Ito & T. Asakawa 97Yg09</td>
<td>AB024957</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. wilksiana</td>
<td></td>
<td>New Caledonia; M. Ito & T. Asakawa 97Zm06</td>
<td>AB024958</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Osmundastrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. cinnamomeum</td>
<td>CI1</td>
<td>Cult. in Tsukuba Botanical Garden; G. Tsutsuki s.n. (TNS)</td>
<td>AB672750</td>
<td>AB672786</td>
<td>AB672824</td>
<td>AB672861</td>
</tr>
<tr>
<td>Clg1</td>
<td></td>
<td>Cult. in Missouri Botanical Garden; G. Yatskievych 98-301</td>
<td>AB024949</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clg2</td>
<td></td>
<td>Cult. in Botanical Gardens, Nikko, University of Tokyo; Hasebe 27624 (T1)</td>
<td>D14882</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Todea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Todea barbara</td>
<td>T1</td>
<td>Cult. in Cibodas Botanical Garden; G. Tsutsuki s.n. (TNS)</td>
<td>AB672751</td>
<td>AB672787</td>
<td>AB672825</td>
<td>AB672862</td>
</tr>
<tr>
<td>(L.) T.Moore</td>
<td>Tg1</td>
<td>Cult. in Cibodas Botanical Garden (originated from New Zealand); Y. Yatabe 99-0306xs</td>
<td>AB024959</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Primers used for the analyses of three nuclear markers.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST_L058</td>
<td>EST_L058F</td>
<td>ATAAGGTTTCGCCCTCGAAT</td>
<td>Yatabe et al. 2009</td>
</tr>
<tr>
<td></td>
<td>EST_L058R</td>
<td>TCTTGCAAGTGCAGTTCAC</td>
<td>Yatabe et al. 2009</td>
</tr>
<tr>
<td>EST_L110</td>
<td>EST_L110F</td>
<td>ATGGCACATCGGAGATGAT</td>
<td>Yatabe et al. 2009</td>
</tr>
<tr>
<td></td>
<td>EST_L110R</td>
<td>CACAGCTGAAACACCCTGAA</td>
<td>Yatabe et al. 2009</td>
</tr>
<tr>
<td>EST_L258</td>
<td>EST_L258F</td>
<td>TCATGGCGACTGTGAAGAG</td>
<td>Yatabe et al. 2009</td>
</tr>
<tr>
<td></td>
<td>EST_L258R</td>
<td>GGCCCTTTGGATTTCGATA</td>
<td>Yatabe et al. 2009</td>
</tr>
</tbody>
</table>

Tracer (Rambaut and Drummond, 2009) was used to check the runs had reached stationarity and effective sample size of all the parameters was high (>100). The first 2.5 million generations before sufficient stationary generations were discarded as burn-in periods and the rest of trees were used to calculate posterior probabilities. *Osmundastrum cinnamomeum* and *Todea barbara* were used as outgroups (Yatabe et al., 1999; Metzgar et al., 2008).

Results

Bayesian and maximum parsimony analyses of each dataset produced congruent topologies (Bayesian consensus trees shown in Figs. 3–6). Maximum parsimony analyses resulted in three shortest trees of a length of 146 steps (CI = 0.77, HI = 0.23, RI = 0.93) for chloroplast *rbcL* (1227 bp) with 101 parsimony-informative characters, 78 shortest trees of a length of 47 steps (CI = 0.89, HI = 0.11, RI = 0.88) for nuclear EST_L058 (198 bp) with 18 parsimony-informative characters, ten shortest MP trees of a length of 125 steps (CI = 0.91, HI = 0.09, RI = 0.91) for nuclear EST_L110 (572 bp) with 57 parsimony-informative characters, and two shortest trees of a length of 122 steps (CI = 0.89, HI = 0.12, RI = 0.94) for nuclear EST_L258 (361 bp) with 59 parsimony-informative characters.

Table 3. Total lengths of three nuclear markers, coding and non-coding regions in *Osmunda japonica* (J3 in Table 1), and identified genes with one of the highest E-value (<0.001) obtained by Blast search (blastn) using sequences of EST libraries (Yatabe et al. 2009).

<table>
<thead>
<tr>
<th>Marker</th>
<th>Accession no.</th>
<th>Total length (bp)</th>
<th>Coding region (bp)</th>
<th>Non-coding region (bp)</th>
<th>Putative gene (species)</th>
<th>GenBank hit accession no. (E-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST_L058</td>
<td>FS993661</td>
<td>198</td>
<td>101</td>
<td>97</td>
<td>glycolate oxidase (gox)</td>
<td>AY173074 (2 × 10^-124)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Zantedeschia aethiopica)</td>
<td></td>
</tr>
<tr>
<td>EST_L110</td>
<td>FS993713</td>
<td>548</td>
<td>148</td>
<td>400</td>
<td>glycerol-3-phosphate (Zea mays)</td>
<td>EU964956 (9 × 10^-77)</td>
</tr>
<tr>
<td>EST_L258</td>
<td>FS993861</td>
<td>317</td>
<td>79</td>
<td>238</td>
<td>ribosomal protein L17 (Castanea sativa)</td>
<td>AF334838 (9 × 10^-102)</td>
</tr>
</tbody>
</table>
The rbcL sequence of *O. × mildei* is identical to that of *O. vachellii* and also was similar to those of *O. banksiifolia* and *O. javanica* Blume (Fig. 3). The *Osmunda × mildei* sequence was more distantly related to *O. angustifolia* (but with low support), and very far from *O. japonica* and other species of subgenus *Osmunda*.

In the three nuclear markers, the *O. × mildei* sample has two distinct allele types (Figs. 4–6). One type (Type A) had the same sequence as some plants of *O. japonica*, while the other (Type B) had the same sequence as *O. vachellii* (in EST_L58 and L110 in Figs. 4 and 5) or a sequence very similar to it (in EST_L258 in Fig. 6). In each of the three nuclear-marker trees, *O. × mildei* was more closely related to *O. vachellii* than to *O. angustifolia*.

Discussion

Our trees constructed from the chloroplast gene and nuclear DNA sequences agree with previous trees in the monophyly of the three subgenera of *Osmunda* (Yatabe et al., 1999; Gou et al., 2008; Metzgar et al., 2008). The rbcL phylogenetic relationships of the subgenera are the same as Yatabe et al.’s (1999) from the same gene and Metzgar et al.’s (2008) from seven chloroplast loci including rbcL, and different from Gou et al. ’s (2008) rbcL relationships. The relationships deduced from the three nuclear EST markers are not consistent with each other, but the relationship of the EST_L110 agrees with the rbcL relationship in the subgenera *Osmunda* and *Plenasium* being sister to each other.

All the phylogenetic trees inferred from the three nuclear EST markers show that *Osmunda × mildei* has two distinct allele types, and one is identical to those of *O. japonica*, and the other formed a monophyletic clade with those of *Plenasium* species (Figs. 4–6). It is suggested that *O. × mildei* is an intersubgeneric hybrid between the subgenera *Osmunda* and *Plenasium*. The Type B alleles of *O. × mildei* have the same EST_L058, EST_L110 sequences and the closest EST_L258 sequences to those of *O. vachellii*, suggesting that *O. × mildei* is most likely derived by hybridization of *O. japonica* and *O. vachellii*.
The chloroplast rbcL sequence of *O. mildei* is identical to that of *O. vachellii* (Fig. 3), suggesting that it is the maternal progenitor of *O. mildei*; hence *O. japonica* is paternal. This suggested parentage agrees with Zhang et al. (2008) and Gou et al. (2008), who suggested *O. vachellii* as the maternal parent, based on chloroplast DNA data and distributional data. *Osmunda banksii* is also very closely related to *O. mildei*, however, comparative morphology does not support that *O. banksii* is a parent, because it has prominently dentate pinnae, whereas *O. vachellii* and *O. mildei* (and also *O. japonica*) are both distinct with entire or somewhat serrate pinnae or pinna-segments.

This study analyzed a sample of *O. mildei* from Shenzhen, Guangdong (Fig. 2). It has very low spore viability and a very low offspring reproduction rate even in carefully controlled culture conditions (Zhang et al., 2008; J.-F. Yang et al., unpubl. data). Considering the low reproductive ability and a few isolated localities in southern China, it is possible that *O. mildei* is of multiple origins, although no molecular evidence is available. *Osmunda × ruggii* of eastern North America (Connecticut and Virginia, USA) is an
intersubgeneric sterile hybrid derived from *O. regalis* (subgenus *Osmunda*) and *O. claytoniana* (subgenus *Claytosmunda*; Tryon, 1940; Wagner et al., 1978; Whetstone and Atkinson, 1993; Li and Haufler, 1994). Like *O. ×mildei*, *O. ×ruggii* grows together with the parents in a few localities (Wagner et al., 1978). Wagner et al. (1978) described that transplants produced fertile pinnae, but produced aborted spores and only univalent chromosomes at meiosis, suggesting its high sterility. *Osmunda ×intermedia*, which is widely distributed across Japan, is suggested to be an intrasubgeneric hybrid of multiple origins from *O. japonica* and *O. lancea*, and it is self-reproducible (Shimura, 1972; Yatabe et al., 2009). The differing levels of fertility and sterility in the three hybrids may reflect close or remote phylogenetic affinities (Yatabe et al., 1999; Metzgar et al., 2008).

Osmunda japonica is distributed in eastern Asia extending west to the Himalayas and south to northern Vietnam (Kato, 2007). It is a likely parent for *O. ×mildei*, *O. ×nipponica* and *O. ×intermedia*, all three of which occur within the distributional range of *O. japonica*. *Osmunda vachellii*, the other parent for *O. ×mildei*, also co-occurs with *O. ×mildei* (Fig. 2). From this
distributional pattern, along with the distributions of *O. ×ruggii* and its parents, we suggest that overlap of the parental species allowed the interspecific hybridization relatively recently. On the contrary, a fertile tetraploid species of hybrid origin between *O. japonica* and *O. regalis* (subgenus *Osmunda*), occurs in northern Central Laos distant from the distribution ranges of both parents, and in northern Myanmar, distant from Central India where *O. regalis* occurs (Kato, 2007; Tsutsumi et al., 2011). Tsutsumi et al. (2011) suggested that the hybrid species arose when the distribution ranges of the parents overlapped, a pattern different from the current pattern.

Acknowledgments

We thank S. Akiyama, M. K. Bhattacharya, W.-L. Chiou, A. Ebihara, C. R. Fraser-Jenkins, P. Hovenkamp, N. Katayama, S. Kobayashi, S. Koi, G. Kokubugata, L.-Y. Kuo, T. Minamitani, R. C. Monica, R. Moran, H. Murata, J. Murata, T. Nakamura, H. P. Nooteboom, T. Oka, A. K. Pradeep, S. Suddee, A. Tuji, T. Wongprasert, G. Yatskievych, X.-C. Zhang, and M. Zink for their help during the trips or providing materials. We also thank H. Liu, Shenzhen Fairylake Botanical Garden for
Fig. 6. Bayesian consensus tree based on nuclear EST L258 (361 bp). Values above branches indicate posterior probabilities (>0.9) calculated by Bayesian analysis and those below branches indicate maximum parsimony bootstrap values (>60). Thick branches are highly supported (posterior probabilities p>0.95 and bootstrap values >90). Abbreviations of materials follow Table 1. Arrowheads indicate allele types obtained from O. × mildei. Numbers of clones of each allele type are in Table 4.

sending a copy of a reference cited here and M. Nakajima for the illustrations. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

LITERATURE CITED

The Tree Fern Highland Lace is a Cultivar of Sphaeropteris cooperi

DANIEL G. YANSURA
330 Carmel Ave., Pacifica, CA, 94044-2407, USA
BARBARA J. HOSHIZAKI
557 N. Westmoreland Ave., Los Angeles, CA, 90004-2210, USA

ABSTRACT.—The tree fern Highland Lace had an unusual introduction into cultivation almost thirty years ago in Eastern Australia and was initially identified as Sphaeropteris tomentosissima (Copel.) R.M.Tryon. Since then, it has been introduced to Europe and the US, and it remains a popular tree fern found in both public and private collections. We re-examined this fern, comparing it to a herbarium type specimen, and conclude that it is not S. tomentosissima, but is most likely a variant form of Sphaeropteris cooperi (F.V. Mueller) R.M.Tryon. Sequence analysis of chloroplast DNA [rbcL, atpA and trnL (UAA) intron] confirmed this species identification.

KEY WORDS.—Highland Lace, Sphaeropteris tomentosissima, Sphaeropteris cooperi, Sphaeropteris excelsa, tree ferns, chloroplast DNA sequence analysis, rbcL, atpA, trnL (UAA) intron

A distinctive tree fern with narrow pinnules and relatively small fronds appeared in Australian cultivation in the 1980s. It was a robust grower and its reduced pinnules imparted a lacy look to the leaves. Compared to most tree ferns, it was smaller, but it also seemed to bear more leaves in its crown. It originated as an unknown contaminant in a sporing pot at a wholesale nursery on the north coast of New South Wales, Australia. The late Rod Hill, an Australian tree fern enthusiast, made an attempt to identify the species and his closest match was Sphaeropteris tomentosissima (Copel.) R.M. Tryon, which grows in the highlands of west central New Guinea.

In the 1980s this plant spread among tree fern collectors and commercial growers in Australia and by the 1990s it was being grown in Europe and the United States. It is called either Highland Lace, New Guinea Treefern or Sphaeropteris tomentosissima. Its lacier appearance compared to other cultivated tree ferns has led to its high popularity, and it was awarded a first place and a trophy at the Los Angeles International Fern Society’s annual Exotic Plant Show in 1997 and 2003 (Lois and Kurt Rossten, Huntington Beach, California).

Despite the enthusiasm for this new addition to the limited list of commercially available cultivated tree ferns, the identity of this fern was always a bit suspect, as noted by the question mark next to the species name on Rod Hill’s former web site (Treeferns Down Under). We have re-examined this fern, and based on scale morphology and chloroplast DNA sequence analysis, conclude that it is actually a variant form of Sphaeropteris cooperi (F.V.Muell.) R.M.Tryon, rather than S. tomentosissima.
Materials and Methods

The type specimen of *Sphaeropteris tomentosissima* (Cyathea tomentosis-sima Copel.) was examined and stipe scales were photographed at high resolution at the University and Jepson Herbaria at the University of California Berkeley (Brass 9116; UC 640117).

Leaf material for isolating chloroplast DNA was obtained from three sources: a cultivated plant of Highland Lace and a cultivated *Sphaeropteris cooperi*, both from the US (Hoshizaki’s and Yansura’s gardens); and four *S. cooperi* plants in the Flecker Botanical Gardens in Cairns, Australia. The latter four plants were carefully checked to be sure they had stipe scales consistent with *S. cooperi* as the garden had one plant labeled *Sphaeropteris excelsa* (Endlicher) R.M. Tryon, which could be confused with *S. cooperi* except for the scale differences. DNA was extracted from leaf material using the DNeasy Plant Mini Kit from QIAGEN (Valencia, California, USA), and the purified DNA was then used as a template to amplify three plastid loci (*rbcL, atpA, trnL intron*) using the polymerase chain reaction (PCR). The reaction was carried out with the appropriate set of primers and Cloned Pfu DNA polymerase from New England Biolabs (Ipswich, MA, USA) according to manufacturer’s protocols. The PCR products were purified using the MinElute Reaction Cleanup kit from QIAGEN and then subjected to DNA sequencing on an ABI3730xl DNA Analyzer. All sequences (the four plants from the Flecker Botanical Garden had one common sequence) were deposited in GenBank (Table 1).

The beginning of the *rbcL* gene and the *atpB-rbcL* spacer were amplified with the primers *atpBR* or *atpBR1* and RBCL158R, the middle of the *rbcL* gene with primers brun1 and brun2, and the 3’ end as well as the *rbcL-accD* spacer with primers RBCL1187F and ACCD887R. The *atpA* gene was amplified by

Table 1. Voucher information and GenBank accession numbers for tree ferns examined.

<table>
<thead>
<tr>
<th>Species</th>
<th>Provenance</th>
<th>ID number</th>
<th>GenBank accession and reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. tomentosissima</td>
<td>Papua New Guinea</td>
<td>UC640117</td>
<td>Korall et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>atpA - AM176460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rbcL - AM177352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conant 4581</td>
<td>trnL intron - AM410304</td>
</tr>
<tr>
<td>S. tomentosissima</td>
<td>Papua New Guinea</td>
<td></td>
<td>rbcL - JN106035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>atpA - JN106039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trnL intron - JN106036</td>
</tr>
<tr>
<td>S. cooperi</td>
<td>Highland Lace</td>
<td>Yansura 1 (UC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Cultivated” Australia</td>
<td></td>
<td>rbcL - HM347350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>atpA - JF690125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trnL intron - JF742607</td>
</tr>
<tr>
<td>S. cooperi</td>
<td>“Cultivated” Australia</td>
<td>Yansura 2 (UC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cooperi</td>
<td>Flecker Botanical Gardens, Cairns</td>
<td>Yansura 3 (UC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Australia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The type specimen of *Sphaeropteris tomentosissima* (Cyathea tomentosis-sima Copel.) was examined and stipe scales were photographed at high resolution at the University and Jepson Herbaria at the University of California Berkeley (Brass 9116; UC 640117). Leaf material for isolating chloroplast DNA was obtained from three sources: a cultivated plant of Highland Lace and a cultivated *Sphaeropteris cooperi*, both from the US (Hoshizaki’s and Yansura’s gardens); and four *S. cooperi* plants in the Flecker Botanical Gardens in Cairns, Australia. The latter four plants were carefully checked to be sure they had stipe scales consistent with *S. cooperi* as the garden had one plant labeled *Sphaeropteris excelsa* (Endlicher) R.M. Tryon, which could be confused with *S. cooperi* except for the scale differences. DNA was extracted from leaf material using the DNeasy Plant Mini Kit from QIAGEN (Valencia, California, USA), and the purified DNA was then used as a template to amplify three plastid loci (*rbcL, atpA, trnL intron*) using the polymerase chain reaction (PCR). The reaction was carried out with the appropriate set of primers and Cloned Pfu DNA polymerase from New England Biolabs (Ipswich, MA, USA) according to manufacturer’s protocols. The PCR products were purified using the MinElute Reaction Cleanup kit from QIAGEN and then subjected to DNA sequencing on an ABI3730xl DNA Analyzer. All sequences (the four plants from the Flecker Botanical Garden had one common sequence) were deposited in GenBank (Table 1).

The beginning of the *rbcL* gene and the *atpB-rbcL* spacer were amplified with the primers *atpBR* or *atpBR1* and RBCL158R, the middle of the *rbcL* gene with primers brun1 and brun2, and the 3’ end as well as the *rbcL-accD* spacer with primers RBCL1187F and ACCD887R. The *atpA* gene was amplified by
YANsura & Hoshizaki: A CULTivar of SPHaeROpTeris CooppERi

Table 2. Primers used in amplification and sequencing. F = forward; R = reverse; S = sequencing.

<table>
<thead>
<tr>
<th>Loci primer</th>
<th>Usage</th>
<th>Sequence (5'-3')</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rbCL atpBR</td>
<td>F</td>
<td>TGAGCTTTGGCAATATTATTG</td>
<td>This study</td>
</tr>
<tr>
<td>rbCL atpBR1</td>
<td>F</td>
<td>TAATCTCTTGACCCGCTGGGTTAC</td>
<td>This study</td>
</tr>
<tr>
<td>rbCL RBCL158R</td>
<td>R S</td>
<td>AAGATTCCGCAAGCTACTGAGCTCC</td>
<td>Pryer, 2004</td>
</tr>
<tr>
<td>rbCL brun1</td>
<td>F S</td>
<td>CATTACCCTCAGAGCAAGGTCAGCG</td>
<td>This study</td>
</tr>
<tr>
<td>rbCL RBCL1187F</td>
<td>F S</td>
<td>GGAACYTTCGACCATCCTTGG</td>
<td>Korall, 2007</td>
</tr>
<tr>
<td>rbCL ACCD887R</td>
<td>R</td>
<td>TTATCACACCGGCAAAATCC</td>
<td>Korall, 2007</td>
</tr>
<tr>
<td>rbCL rbcf1</td>
<td>S</td>
<td>CAAAATAGGGCTTATTCGCT</td>
<td>This study</td>
</tr>
<tr>
<td>rbCL rbcf2</td>
<td>S</td>
<td>CTAGCTTGGGCTTATTCGCG</td>
<td>This study</td>
</tr>
<tr>
<td>atpA ESATPF415F</td>
<td>F S</td>
<td>CARGTTCCGACGAAACTTCTCG</td>
<td>Schuettpelz, 2006</td>
</tr>
<tr>
<td>atpA ESTRNR46F</td>
<td>R S</td>
<td>GTATAGGTTCRARTCCTATTGGACG</td>
<td>Schuettpelz, 2006</td>
</tr>
<tr>
<td>atpA atpAf</td>
<td>S</td>
<td>GACAGACTGTTAAACAGCAGTAG</td>
<td>This study</td>
</tr>
<tr>
<td>atpA atpAr</td>
<td>S</td>
<td>TGGCCCGTGCAATGCGCCAGATTAA</td>
<td>This study</td>
</tr>
<tr>
<td>trnL trn1</td>
<td>R S</td>
<td>ATTTGAACTGGTGACACGAGGAT</td>
<td>This study</td>
</tr>
<tr>
<td>trnL trn2</td>
<td>F S</td>
<td>CGGAAATCGGTGCTGAGCTACTAGC</td>
<td>This study</td>
</tr>
<tr>
<td>trnL trn5</td>
<td>S</td>
<td>TGGCCCGTGCAATGCGCCAGATTAA</td>
<td>This study</td>
</tr>
<tr>
<td>trnL trn6</td>
<td>S</td>
<td>TCCAGGGGGCTATTCCAACG</td>
<td>This study</td>
</tr>
<tr>
<td>trnL trn9</td>
<td>S</td>
<td>TCGAGTTCCTGTACATC</td>
<td>This study</td>
</tr>
</tbody>
</table>

PCR using the primers ESATPF415F and ESTRNR46F, and the trnL intron and flanking sequences were amplified with the primers trn1 and trn2. All primers used for PCR amplification and sequencing are listed in Table 2.

Results

Our first indication that this tree fern might be misidentified was based on the stipe scales, which did not match the published description for Sphaeropteris tomentosissima (Holttum, 1963). Comparison with the type specimen reaffirmed that the two plants were very different in scales, leaf, and other details (Fig. 1 and 2A–C). Surprisingly, however, the stipe scales on Highland Lace closely match those of the commonly cultivated Australian tree

Fig. 1. A comparison of the pinnae. A: Sphaeropteris tomentosissima; B: Highland Lace; C: Sphaeropteris cooperi. The bars represent 1 cm.
The scales of Highland Lace were compared to *Sphaeropteris cooperi* and *Sphaeropteris tomentosissima*. The *S. tomentosissima* stipe scales are brown, twisted, and have edges bearing setae of the same color as the scales. In contrast, the broader stipe scales of Highland Lace and *S. cooperi* are whitish to light tan, with their margins usually bearing a very narrow row of dark reddish brown marginal cells and setae of the same color. Additionally, Highland Lace and *S. cooperi* have small narrow dark reddish brown scales on the stipe, which are absent on *S. tomentosissima* (Fig. 2A–C). Also particularly noticeable on *S. tomentosissima* are the very dense mats of small woolly scales on the abaxial side of all rachises (Fig. 3A–C), which are not present on *S. cooperi* or Highland Lace. The comparison of scales alone is highly suggestive that Highland Lace is much more closely related to *S. cooperi* than to *S. tomentosissima*.

In order to ascertain if Highland Lace is possibly *Sphaeropteris cooperi* and to further rule out *Sphaeropteris tomentosissima*, we compared *rbcL* DNA...
sequence data for both species (Newmaster et al., 2006; Korall et al., 2007). The Highland Lace sequence differed from the partial gene sequence of *S. tomentosissima* in GenBank by four changes over the 1309 base pair (bp) length, further evidence that they were different species (Table 3). This sequence was then searched on GenBank and surprisingly the top BLAST match for Highland Lace was a sequence from *Sphaeropteris excelsa* rather than the expected *S. cooperi*. The 1309 bp sequence of *S. excelsa* (AM410213) was identical to that portion in Highland Lace, while the *S. cooperi* sequence (SCU05944) differed by four changes over 1320 bp.

This *rbcL* sequence comparison seemed to indicate that Highland Lace was closer to *S. excelsa* than to either *S. cooperi* or *S. tomentosissima*. However, the scales on Highland Lace did not match this conclusion. Highland Lace and *S. cooperi* have both broad pale scales as well as small narrow dark red scales on its stipe, while *S. excelsa* has only broad pale scales. Additionally, Highland Lace (and *S. cooperi*) has small narrow dark red scales on its costa and costule while *S. excelsa* has a mat of whitish scales and hairs (Hoshizaki and Yansura, 2005). Since the scales on Highland Lace matched those of *S. cooperi* rather than *S. excelsa*, we decided to obtain additional *S. cooperi* *rbcL* sequence data from a cultivated plant and from four plants from the Flecker Botanical Gardens (Table 1). All five sequences were identical over the complete *rbcL* gene of 1428 bp, and these were exact matches for the Highland Lace gene.

In order to further confirm the identity of Highland Lace, the chloroplast *atpA* gene sequence (Schuettpetz et al., 2006) was obtained from this plant, from the cultivated *S. cooperi* plant and from the four tree ferns in the Flecker Botanical Garden. All six sequences matched perfectly over the complete gene sequence of 1521 bp, while the GenBank partial sequence for *Sphaeropteris tomentosissima* differed by one change over 1514 bp (Table 3), resulting in one
amino acid change (T213N). There were no reference atpA sequences in GenBank for S. cooperi or S. excelsa.

As a final step, we obtained DNA sequences for the trnL (UAA) intron (Taberlet et al., 2007). Highland Lace perfectly matched that of cultivated S. cooperi and the four Flecker Botanical Gardens specimens over the intron’s 554 bp (Table 3), and these sequences also matched exactly the partially overlapping 534 bp of S. cooperi in GenBank (EU554328) and S. excelsa over 525 bp (AM410341). The S. tomentosissima sequence in GenBank differed by two bp over the complete 554 bp overlap (Table 3).

Sphaeropteris excelsa and *S. cooperi* are closely related (Tryon and Tryon, 1959; Tryon, 1970; Jones and Clemesha, 1981) and share at least partial common *rbcL* and *trnL* (UAA) intron DNA sequences. These *S. excelsa* sequences were subsequently reconfirmed using leaf material from a cultivated plant (Hoshizaki and Yansura, 2005). The phylogenetic relationship between these species is unknown, but less conserved non-coding (Shaw et al., 2005; Kress and Erickson, 2007) or nuclear sequences (Sang, 2002) could resolve this question.

Discussion

The identification of tree ferns is especially difficult when the country of origin is not known (Pryer et al., 2010). While Australia has only eleven native species (Jones and Clemesha, 1980), the possibility of non-native spore arriving from nearby New Guinea or from the collections of tree fern enthusiasts within the country is certainly reasonable. The unique appearance of Highland Lace, in particular the reduced pinnules, almost certainly led Rod Hill to identify it as the non-Australian species *S. tomentosissima*. Upon re-examining Highland Lace, the traditional use of stipe scales for tree fern identification suggested that this identity was incorrect.

The more recently developed approach of using chloroplast or nuclear DNA sequences as barcodes for species identification (Kress et al., 2005; Chase et al., 2005; CBOL Plant Working Group, 2009) has been shown to complement traditional analyses based on morphological characters. While DNA sequence analysis is becoming a more widely used tool for this purpose, the public database is still somewhat limited in terms of species coverage. There are only about 150 *rbcL* sequences from *Sphaeropteris*, *Cyathea* and *Alsophila* in GenBank, while worldwide there are over 600 Cyatheaceae tree fern species (Large and Bragins, 2004). However, an enlarged DNA database will eventually provide a more robust system.

The confirmation that Highland Lace is *S. cooperi* required the use of both morphological characters and DNA sequence analysis. The early study of stipe scales showed that Highland Lace was not *Sphaeropteris tomentosissima*, but it did not demonstrate that it was *S. cooperi*. To do so was more tenuous considering that there are approximately 120 *Sphaeropteris* species worldwide (Large and Bragins, 2004), many with similar scale morphologies.
Our first DNA sequence analysis based on rbcL confirmed that Highland Lace was not *S. tomentosissima*, but the effort to determine if it was related to *S. cooperi* resulted in the discovery of a GenBank voucher that was misidentified (see Results for details). As a result, new reference sequences were made for *S. cooperi*, which all proved identical to the Highland Lace sequence. Further DNA sequence analysis based on the chloroplast *atpA* gene and the *trnL* (UAA) intron also confirmed that Highland Lace is *S. cooperi* (Table 3).

As a practical way to identify a tree fern species, DNA barcoding is an important tool, but with the limited data available, it cannot be used exclusively. The initial Highland Lace *rbcL* sequence quickly showed that this tree fern was not *S. tomentosissima*. However, given the sequences that currently exist in GenBank, DNA barcoding could not distinguish whether *S. excelsa* or *S. cooperi* was the correct species. Morphologically specific features, particularly the leaf scales in tree ferns, still play an important role in fern identification. The use of morphological characters that initiated this investigation later led to the discovery of the error in the database and its subsequent correction, and scale characteristics ultimately allowed us to choose *S. cooperi* as the correct species. The interplay of these two methods was important throughout this study.

At first glance, it is difficult to think that Highland Lace and *S. cooperi* are actually the same species because their general appearances are so strikingly different (Fig. 4). *Sphaeropteris cooperi* is native to eastern coastal Australia and is known to be variable in form (producing cultivars including Brentwood, Robusta, Allyn Lace, and Allyn Kiest). Most of these variants, however, are quite modest compared to what is observed in Highland Lace with its conspicuously contracted, recurved margins and the reduced size of the
pinnules. *Sphaeropteris cooperi* shares this ability to produce multiple variants with a limited number of other ferns. Species such as *Athyrium filix-femina* (L.) Roth and *Polystichum setiferum* (Forssk.) Moore ex Woynar are also known to produce many variants that have contracted or reduced blade surfaces, recurved margins, and smaller dimensions, plus many more deviations from the typical shape (Rickard, 2000; Hoshizaki and Moran, 2001).

A search of the literature suggests that this unusual tree fern may have been reported earlier. A description of *Sphaeropteris cooperi* (in Flora of Australia, 1998) mentions the existence of an unnamed narrow pinnule variant:

"An occasionally cultivated form of *Cyathea* (*Sphaeropteris*) *cooperi* from central and northern Queensland has narrow recurved abaxially glaucous pinnule lobes, with the majority of rhizome and stipe scales lacking any brown coloration. The sori in this form are commonly restricted to the basal part of each pinnule, at least on younger plants. The Victorian collection may be an isolated accidental occurrence rather than a sample from a naturalized population."

This is possibly the same plant as Highland Lace. However, in the Flora of Australia description, the stem and stipe scales of this fern are said to lack any brown coloration while the Highland Lace specimens in the US have dark red-brown margins, bearing setae. The sori on Highland Lace also may extend well beyond the basal part of each pinnule to near the tip in the US specimens. If Rod Hill’s website is correct concerning the origin of this unusual fern in a spore pan (but in New South Wales instead of Queensland), we may consider this form an accidental occurrence. However it cannot be ruled out that this aberrant plant may also exist in the wild.

Acknowledgments

We are indebted to Chris Goudie and Neil Shirley, both of Australia, for their help in providing information pertaining to this cultivar. We also thank the Flecker Botanical Gardens in Cairns, Australia for providing leaf samples from several *Sphaeropteris cooperi* plants for DNA analysis. Lastly, we would like to acknowledge the generous help we received at the University and Jepson Herbaria at the University of California Berkeley: Alan Smith and Andrew Doran gave us general assistance in locating specimens; Kelly Agnew took and then provided us with the high-resolution photographs used in this article.

Literature Cited

Elaphoglossum montanum, a New Species from Southern Brazil

MARIA A. KIELING-RUBIO
Universidade Federal do Rio Grande do Sul, PPG Botânica, Prédio 43433, CEP: 91501-970 Porto Alegre, Brazil. e-mail: angelrubio@ig.com.br

PAULO G. WINDISCH
Universidade Federal do Rio Grande do Sul, PPG Botânica, CP 15020, UFRGS Campus do Vale; 91501-970 Porto Alegre, Brazil. e-mail: pteridos@gmail.com

ABSTRACT.—Elaphoglossum montanum, a new fern species of the Atlantic Forest in southern Brazil, is described, illustrated, and compared to the most similar species. It belongs to the Elaphoglossum “Subulate scales clade” and occurs in the upper montane forest regions in the States of Rio Grande do Sul and Santa Catarina, between 600 and 1400 m.

KEY WORDS.—Atlantic Forest, southern Brazil, pteridophytes, taxonomy, floristic diversity

Elaphoglossum Schott ex J. Sm. contains ca. 600 species and ranks as one of the largest and most complex genera of ferns (Mickel and Atehortúa, 1980). It is pantropical but it is most diverse in the Neotropics, where ca. 80% of the species occur (Moran et al., 2007). In Brazil, the highest species diversity is in the Atlantic Forest biome (Windisch and Kieling-Rubio, 2010), which is considered by Tryon (1972) as one of the three main centers of fern endemism and speciation in Tropical America. In southern Brazil (States of Paraná, Santa Catarina, Rio Grande do Sul), about 40 species of Elaphoglossum occur (Windisch and Kieling-Rubio, 2010), most of them occurring in humid forests, especially in montane and submontane areas.

Mickel and Atehortúa (1980) considered the genus Elaphoglossum as presenting nine sections, based on morphological characters. Part of these sections was supported by the molecular phylogeny presented by Skog et al. (2004) and Rouhan et al. (2004). Among the clades recovered by those studies is the “Subulate scales clade”. Rouhan et al. (2004) indicated more details studies should precede a formal taxonomic definition of this group within the genus Elaphoglossum.

During a study on the genus Elaphoglossum for Brazil, we found a new species with subulate scales and hydathodes on the laminar margin, belonging to the “Subulate scales clade”, sensu Skog et al. (2004), which we describe as follow.

Elaphoglossum montanum Kieling-Rubio & P.G. Windisch, sp. nov. TYPE.—Brazil. Santa Catarina: Lauro Müller, Serra do Rio do Rastro (28°21'58.1"S 49°33'0.3"W), 1372 m, 10 Mar 2011, Kieling-Rubio & Windisch 900 (holotype ICN; isotypes B, RB). Figs. 1–2.
Species *Elaphoglossum piloselloides* (C. Presl) T. Moore habitu aliquot similis, a qua frondibus fertilibus rotundatis et sporis uniformiter echinatis sine cristis differt.

Plants litophytic. Rhizomes short-ascending, 1.5–2.9 mm diam., rhizome scales 0.2–0.4 × 2.5 mm, brown, lanceolate. Fronds dimorphic, 2.8–9 cm long.
Sterile fronds simple, 2.8–7 cm long; stipes 1.5–4.0 cm long × 0.5–0.8 (1.0) mm diam., light green, covered with subulate scales (bases flat or somewhat enrolled), 2–5 mm long, light brown sometimes darker at the base, with dentate margins and a hair-like apex; laminae 1.3–3.0 cm long × 0.4–0.8 mm wide, chartaceous to coriaceous, elliptic, apices rounded, margins recurved when dry, veins barely visible, terminating in hydathodes close to the margins; laminar scales similar to those of the stipes, densely covering both surfaces when young, then glabrescent on the adaxial surface. Fertile fronds equaling or usually longer than the sterile ones; stipes 2.5–6.0 cm long × 0.6–1.0 mm diam., brown, scales similar to those on sterile fronds; fertile laminae 0.5–3.0 cm long × 0.4–1.0 cm wide, rounded (appearing reniform when conduplicate), base narrowly decurrent, adaxial surfaces covered with subulate scales similar to those of the sterile fronds; margins membranous. Spores monolete with a uniformly echinate perispore (Fig. 2).

Distribution and Ecology.—*Elaphoglossum montanum* is only known from the upper montane region between the States of Rio Grande do Sul and Santa Catarina, in areas with humid forests, from 600 to ca. 1400 m. The two known populations were found on wet cliffs, in shaded places, along (and even underneath) individuals of *Gunnera manicata* Linden ex André.

Etymology.—The specific epithet "*montanum*" refers the occurrence of the species in the mountains of the Serra Geral.

Elaphoglossum montanum is similar to *E. piloselloides* (from Peru to southeastern and central-western Brazil), and *E. jamesonii* (Hook. & Grev.) T. Moore (Andean region) by presenting small fertile fronds that remain conduplicate until the full maturation of the sporangia, and by the subulate scales with dentate margins and hair-like tips present on the fronds. However, *Elaphoglossum montanum* can be easily distinguished by having a more rounded fertile laminae, echinate spores, and light brown subulate scales on the adaxial surfaces of the sterile laminae. In contrast, *E. piloselloides* has narrowly and oblong fertile laminae, crested spores (Moran et al. 2007) and dark brown subulate scales on the adaxial surfaces of the sterile laminae. *Elaphoglossum jamesonii*, on the other hand, can be distinguished by its crested perispores (SEM of spore from the type at Berlin, B-200070911).

Elaphoglossum minutissimum R. C. Moran & Mickel, from Costa Rica (Moran and Mickel, 2004) is also a similar species, which differs from *E. montanum* by not having conduplicate fronds.

Acknowledgments

To the Federal University of Rio Grande do Sul for the research facilities, to the “Coordenação do Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for the Doctoral Fellowship awarded to the first author; to the “Deutscher Akademischer Austauschdienst” (DAAD) for financial aid during the visit to the collections abroad (B, BM, K, and M), to the Brazilian Research Council (CNPq) for research grants. To the curators of the following Herbaria for the loans and assistance during our visits (B, BM, CORD, D, HAS, HB, HBG, HBR, HUCS, ICN, K, M, MBM, MO, PACA, P, PR, R, RB, S, SJRP, SP, SPF, UPCB), especially to Dr. Brigitte Zimmer and Dr. Robert Vogt for their support at the Botanical Gardens of Berlin. Dr. David Lellinger and Dr. Robin Moran kindly provided suggestions on a first version of the manuscript. To botanists present and past who contributed with their collections, as well as to Greta Aline Dettke for assistance in SEM and to Cristiano Roberto Buzatto for the illustrations.

Literature Cited

SHORTER NOTES

However, recently, in 2010, the first author, during field work for his Master thesis, found a population of *Pellaea ovata* growing in the mountains in the center of the state of São Paulo, more precisely in the Municipality of Botucatu, Pavuna Farm. trail to the waterfall, 22°50′15″S, 48°30′40″W, 750 m, 13 Jan 2010, Biral & Gomes 511 (BHC, HRCB, SP). In 2011 we visited the same population of this species and another sample was collected: Pavuna Farm, Road Marechal Rondon (SP 300), km 259, between Botucatu and São Manuel, 22°50′S, 48°30′W, 600 m, 6 May 2011, Prado et al. 2143 (DUKE, HRCB, MO, NY, P, SP, UC). *Pellaea ovata* belongs to the Section *Pellaea* and it can be easily recognized by the scandent habit, creeping and dichotomously branched rhizomes, flexuose and pubescent rachises, stalked and ovate to cordate segments, and lamina glabrous on both surfaces (Fig. 1). Our two collections represent the first record of *P. ovata* from Brazil.

Pellaea ovata is distributed from the southern United States (Turner et al., Atlas Vasc. Pl. Texas, v.2, Sida, Bot. Misc., pg. 666. 2003) to Argentina, including Central America and Hispaniola (Tryon l.c.). At the Pavuna Farm, it grows among grasses and at the bases of *Aechmea distichantha* Lem. (Bromeliaceae) and *Praecereus euchlorus* (F.A.C. Weber) N.P. Taylor (Cactaceae). The Pavuna Farm encompasses the largest fragment of the “Mata da Pavuna” and occupies an area of 378.49 ha at an elevation of 600–761 m. The relief is steep, with slopes between 30°–90° of inclination, and soils that are shallow, dry, and sandy. There are two distinct climatic seasons in this region,
the rainy summer and dry winter. Average monthly temperatures range from 12.4°C (September) to 28.1°C (January) and mean monthly rainfall from 270.15 mm (January) to 27.92 mm (August) (data graciously provided by the Meteorological Station of Experimental Farm São Manuel, Faculdade de
Ciências Agrárias, University of São Paulo State, Botucatu, SP, Brazil). The main vegetation in the area is semideciduous forest (i.e., non-Atlantic forest) and on the tops of the slopes there are some xerophitic elements among rocks, such as Aechmea distichantha, Praecereus euchlorus and Cereus hildmannianus K. Schum. (Cactaceae). This area belongs to the “Residual Pleistocene Seasonal Formations Arc” in South America (Prado and Gibbs, Ann. Missouri Bot. Gard. 80:902–927. 1993). According to these authors, nowadays this arc contains remnants of the dry vegetation of that time, including the genera noted above. The arborescent component of the slopes in this area is dominated by Aspidosperma riedelii Müll. Arg. (Apocynaceae), a species cited by Prado and Gibbs (l.c.) as typical of dry seasonal forests of South America. Pellaea ovata can be added here as another example of a relictual element, because its distribution is coincident with this dry arc, especially along the line of latitudes between 15°–28°S, between Bolivia (Chuquisaca, La Paz, Tarija, Cochabamba), Argentina (Catamarca, Salta and Tucumán), and Brazil (São Paulo). It is also cited as occurring in dry vegetation in Ecuador (Wiggins, Amer. Fern J. 36(1):1–7. 1946).

This note is one of the results of the project “Vascular flora of ‘Mata da Pavuna’, Botucatu, SP, Brazil” developed by the first author and Julio A. Lombardi, and was supported by The National Council for Scientific and Technological Development (CNPq). We thank Klei Souza for preparing the drawings.—LEONARDO BIRAL, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Depto. de Botânica, CEP 13506-900, Rio Claro, SP, Brazil, and JEFFERSON PRADO, Instituto de Botânica, Herbário SP, Av. Miguel Stéfano, 3687, CEP 04301-012 São Paulo, SP, Brazil.

Botrychium simplex E. Hitchcock, the least moonwort, was described by Hitchcock in 1823 (American Journal of Science and Arts. 6:103. 1823). In

Furthermore, Kato (personal comm. 16-Aug. 2011) mentioned that there is no recent report of this species from Japan, and previous records of B. *simplex* from Japan (cited by Clausen 1938; and Nishida in Acta Phytotax. Geobot. 18: 39–43. 1959) are for dwarfed *B. lunaria*. In their treatment of *B. simplex* in the Flora of North America, Wagner and Wagner (1993) do not mention Asian plants. However, in Asia, *B. simplex* may have been overlooked by pteridologists because of its similarity to *B. lunaria*, and because the many cryptic species of *Botrychium* are extraordinarily difficult to distinguish from each other due to their morphological similarity (Hauk, Am. Fern J. 85: 375–394. 1995).

Recently, Fraser-Jenkins (2008) found three herbarium sheets (one at PE and two at BM) of *B. simplex* within the bundles of *B. lunaria* collected by F. Kingdon-Ward from Tibet (Xizang) province of China. Because of the close proximity of the *B. simplex* Tibetan locality to the Indian frontiers, as well as climatic similarities between the regions, Fraser-Jenkins postulated that the *B. simplex* should also be present in India. He also noticed that Sino-Himalayan and American-European plants of *B. simplex* were morphologically distinct and the latter was given a new rank of subspecies as *Botrychium simplex* subsp. *kannenbergii* (Klinsm.) Fraser-Jenk. However, for the Asian plants he retained the name *Botrychium simplex* subsp. *simplex* (Syn. *Botrychium tenebrosum* A. A. Eaton, *Botrychium simplex* var. *tenebrosum* (A. A. Eaton) R. T. Clausen). Clausen (1938) placed *B. kannenbergii* in synonymy with *B. simplex* var. *typicum* Clausen, which is synonymous with *B. simplex* var. *simplex*. So, based on the text here, Sino-Himalayan and American-European plants are the same i.e., *B. simplex* var. *simplex*. Similarly, according to Clausen (1938), *B. tenebrosum* or *B. simplex* var. *tenebrosum* and *B. simplex* var. *simplex* are not synonymous, hence both are different taxa. But according to Fraser Jenkins (2008), the variations in *Botrychium simplex* var. *tenebrosum* (taller plants with fertile branched attached further up) are under the normal morphological range of *Botrychium simplex* subsp. *simplex* and are due to environmental factors and he treated them as synonyms.

While on a fern collection trip to high altitudes of North Sikkim, India, the author found some interesting *Botrychium* (B. S. Kholia no. 35481, 9 September 2010, BSHC) from ca. 4–5 km West of Thangu. After crossing the Thangu river via a foot bridge, and after ascending a few meters, the right foot path goes to Chopta valley and the left ascends to another beautiful valley and a Shiv temple. The plants were found growing near the mountain summit of these two valleys, on a SE facing slope hardly 5–10 m below the mountain top, ca. 4320 m elev., ca. 27° 53′ 41″ N, 88° 31′ 23″ E". These plants are small (6–13 cm tall) with somewhat deltate, shortly stalked trophophores, which are attenuate at the base and have only one or two pairs of pinnae. Pinnae are asymmetrical, spathulate or obovate deltate, cuneate and adnate to the winged rachis. The sporophore is also very short with large sessile globose sporangia arising from the rachis except the lowest pair which are short stalked and often slightly branched and bear 3–5 sporangia. These plants are markedly different from *B. lunaria*. In *B. lunaria* the trophophore is lanceolate to narrowly ovate,
Fig. 1. *Botrychium simplex* A: Habit; B–D: Close up of trophophore and sporangiophores. (Scale bar: A = 2.5 cm, B = 1.5 cm, C = 2 cm, D = 0.5 cm).
generally long stalked, once pinnate with ca. 5–10 pairs of pinnae which are broadly fan-shaped or lunate in shape and stalkless to shortly stalked. The sporophores of *B. lunaria* are pinnate (sometimes the lower pairs are bipinnate).

During the International Symposium on Pteridophytes (November, 2010, Palampur Himachal Pradesh, India) photos of this *Botrychium* (Fig. 1 A-D) were shown to C. R. Fraser-Jenkins, who identified them as *B. simplex*. These photos were also sent to Prof. Donald Farrar, who agreed with Fraser-Jenkins’ determination. Thus, this is the first record of *B. simplex* in the Indian Himalayan Mountains. This find expands the range of *B. simplex*. At present, in India, this species is known only from the locality mentioned above. More plants are likely to be found after thorough surveys in similar habitats of Indian and Sino Himalayan regions.

The author is greatly indebted to Mr. C. R. Fraser-Jenkins for identifying the specimens and his kind help throughout my studies of Himalayan ferns. Grateful thanks are also due to Prof. D. R. Farrar for encouragement. I profoundly thank Dr. M. C. Stensvold and Dr. J. M. Sharpe for their review of the previous draft and encouragements. Thanks are also due to Profs. M. Kato, S. Masuyama and N. Sahashi for the status of species in Japan. Two anonymous reviewers are also thanked for their fruitful comments. I also acknowledge Dr. D. K. Singh, Director B. S. I. and Dr. K. Das, Scientist In-charge, B.S.I. Sikkim for their help with this project.—B. S. KHOLIA, Botanical Survey of India, Sikkim Himalayan Regional Center Gangtok, Sikkim, 737 103 INDIA.
INFORMATION FOR AUTHORS

Authors are encouraged to submit manuscripts pertinent to pteridology for publication in the American Fern Journal. Manuscripts should be sent to the managing editor at amerfernj@hotmail.com. Acceptance of papers for publication depends on merit as judged by two or more referees. Authors are encouraged to contribute toward publishing costs; however, the payment or non-payment of page charges will affect neither the acceptability of manuscripts nor the date of publication.

Authors should adhere to the following guidelines; manuscripts not so prepared may be returned for revision prior to review. **Electronic submission is strongly encouraged:** however if it is necessary to submit hard copy, please submit one copy of the manuscript and include a review copy of illustrations and originals of illustrations. After acceptance, please submit final versions of manuscripts via FTP (contact the managing editor for instructions), email, or on diskette or CD ROM (see below for figure formatting). If submitting hard copies, use standard 8.5 by 11 inch paper of good quality, not “erasable” paper. **Double-space manuscripts throughout,** including title, author's names and full addresses, a short, informative abstract, key words, text (including heads and keys), literature cited, tables (separate from text), and figure captions (grouped as consecutive paragraphs separate from figures). Arrange parts of manuscript in order just given. Include author's name and page number in the upper right corner of every sheet, and provide an abbreviated running title. Provide margins of at least one inch (25 mm) all around on typed pages. Do not submit right-justified text, avoid footnotes, and do not break words at end of lines. Make table headings and figure captions self-explanatory. Use S.I. (metric) units for all measures (e.g., distance, elevation, weight) unless quoted or cited from another source (e.g., specimen citations). For nomenclatural matters (i.e., synonymy and typification), use one paragraph per basionym (see Regnum Veg. 58:39-40, 1968). Abbreviate titles according to Botanico-Periodicum-Huntianum (Lawrence et al., 1968, Hunt Botanical Library, Pittsburgh) and its supplement (1991). References cited only as part of nomenclatural matter are not included in literature cited. For shorter notes and reviews, omit the abstract and put all references parenthetically in text. Use Index Herbariorum (Regnum Veg. 120:1-693, 1990; or http://websun. nybg.org/bsci/ih/) for designations of herbaria. For more detailed instructions on manuscript preparation, see http://amerfernsoc.org/.

Illustrations should be proportioned to fit page width (5 inches or 12.5 cm) with caption ultimately to be included on the same page. Halftone and color images should be scanned at a minimum of 300 pixels per inch (ppi). Line art should be scanned at 1200 ppi whenever possible. Please note that nearly all images that are downloaded from the Internet or that are in JPEG or GIF format will be 72 dpi and not acceptable for the printing process. Indicate the file format of the graphics. Please submit image files in TIFF (preferable) or EPS format. Provide margins of at least 25 mm on all illustrations. For continuous-tone illustrations, design originals for reproduction without reduction or by uniform amount. In composite blocks, abut edges of adjacent photographs. Avoid combining continuous-tone and line-copy in single illustrations or blocks. Coordinate sequence and numbering of figures (and tables), with order of citation in text. Explain scales and symbols in figures themselves, not in captions. Include a scale and reference to latitude and longitude in each map.

Instructions for downloading electronic proofs and reprint order forms are sent to authors by the printer. Authors should send proof corrections of corrected proofs to the editor and reprint orders to the printer. Authors will be assessed charges for extensive alterations made after type has been set.

For other matters of form or style, consult recent issues of the American Fern Journal and The Chicago Manual of Style, 14th ed. (1993, Univ. of Chicago Press, Chicago). Occasionally, departure from these guidelines may be justified. Authors are encouraged to consult the editor for assistance with any aspect of manuscript preparation.

Papers of longer than 32 printed pages may be sent to the Editor of Pteridologia (memoir Editor, see journal cover page 2).
PTERIDOLOGIA ISSUES IN PRINT

The following issues of *Pteridologia*, the memoir series of the American Fern Society, are available for purchase:

1. Wagner, David H. 1979. Systematics of *Polystichum* in Western North America North of Mexico. 64 pp. $10.00 plus postage and handling.

For orders and more information, please contact our authorized agent for sales at: Missouri Botanical Garden Press, P.O. Box 299, St. Louis, MO 63166-0299, tel. 314-577-9534 or 877-271-1930 (toll free). For online orders, visit: http://www.mbgpress.org.

AMERICAN FERN JOURNAL ON MICROFICHE

Volumes 1-61 of the *American Fern Journal* are available as archival quality, silver positive microfiches. Single volumes or the entire run may be purchased. The fiches are easily read with 10x or greater magnification (using a dissecting microscope and transmitted illumination or a fiche reader). Silver negative microfiches of vols. 1–50 are also available. The price is $4.00 per volume or $244.00 per set of 61 volumes, postpaid.

Send your inquiry or order with a check or money order to: American Fern Society, Inc., % Ecology III, 804 Salem Blvd., Berwick, PA, 18603-9801.

FIDDLEHEAD FORUM

The editor of the Bulletin of the American Fern Society welcomes contributions from members and non-members, including miscellaneous notes, offers to exchange or purchase materials, personalia, horticultural notes, and reviews of non-technical books on ferns.

SPORE EXCHANGE

Ms. Denia Mandt, 12616 Ibbetson Ave., Downey, CA 90242-5050, is Director. Spores exchanged and lists of available spores sent on request. http://amerfernsoc.org/sporexy.html

GIFTS AND BEQUESTS

Gifts and bequests to the Society enable it to expand its services to members and to others interested in ferns. Back issues of the Journal and cash or other gifts are always welcomed and are tax-deductible. Inquiries should be addressed to the Membership Secretary.

VISIT THE AMERICAN FERN SOCIETY’S WORLD WIDE WEB HOMEPAGE:

http://amerfernsoc.org/
The Anatomy and Occurrence of Foliar Nectaries in *Cyathea* (Cyatheaceae)
Richard A. White and Melvin D. Turner

An Expanded Plastid Phylogeny of *Marsilea* with Emphasis on North American Species
W. Mark Whitten, Colette C. Jacono, and Nathalie S. Nagalingum

Effect of Habitat Modification on the Distribution of the Endangered Aquatic Fern *Ceratopteris pteridoides* (Parkeriaceae) in China
Yuan-Huo Dong, Qing-Feng Wang, and Robert Wahiti Gituru

Negative Gravitropism in Dark-Grown Gametophytes of the Fern *Ceratopteris richardii*
Hiroyuki Kamachi and Munenori Noguchi

Antimicrobial and Modulatory Activity of Ethanol Extract of the Leaves from *Lygodium venustum* SW.

A New Species and a New Hybrid in the Grammitid Fern Genus *Stenogrammitis* (Polypodiaceae)
Paulo H. Labiak

Diplazium fimbriatum (Athyriaceae), a New Species from Brazil
Claudine M. Mynsens and Fernando B. Matos

Isoetes mourabaptistiae, a New Species from Southern Brazil
Jovani B. Pereira, Paulo G. Windisch, Maria L. Lorscheitter, and Paulo H. Labiak

Shorter Notes

Agravitropic Growth of the Early Leaves of Apogamous Sporophytes of *Dryopteris tyrhrena*
Sara Magrini and Anna Scoppola

Cheilanthes feei T. Moore (Pteridaceae) and *Dryopteris erythrosora* (D.C. Eaton) Kunze (Dryopteridaceae) New for the Flora of North Carolina
C. J. Rothfels, E. M. Sigel, and M. D. Windham

Reviews

Flora de la Región del Parque Nacional Amboró, Bolivia, Vol. 1 *Licofitas y Helechos, Ginkgospermas*
Michael Kessler

Erratum
The American Fern Society

Council for 2012

MICHAEL WINDHAM, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708.

KATHLEEN PRYER, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708.

MARY STENSVOLD, USDA Forest Service, 204 Siginaka Way, Sitka, AK 99835.

JAMES D. CAPONETTI, Div. of Biology, University of Tennessee, Knoxville, TN 37996-0830.

GEORGE YATSKEVYCH, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.

JENNIFER M. O. GEIGER, Dept. of Natural Sciences, Carroll College, Helena, MT 59625.

R. JAMES HICKEY, Dept. of Botany, Miami University, Oxford, OH 45056.

JOAN N. E. HUDSON, Dept. of Biological Science, Sam Houston State University, Huntsville, TX 77341-2116.

DAVID SCHWARTZ, 9715 Christey Way, Bakersfield, CA 93312-5617.

American Fern Journal

EDITOR

JENNIFER M. O. GEIGER Dept. of Natural Sciences, Carroll College, Helena, MT 59625, ph. (406) 447-4461, e-mail: jgeiger@carroll.edu

MANAGING EDITOR

JILL ANNE DILL Dept. of Natural Sciences, Carroll College, Helena, MT 59625, ph. (406) 447-5176, e-mail: jill@carroll.edu

ASSOCIATE EDITORS

NAN CRYSTAL ARENS Dept. of Geoscience, Hobart & William Smith Colleges, Geneva, NY 14456

JOSE MARÍA GABRIEL Y GALÁN Dept. de Biología Vegetal I, Universidad Complutense de Madrid, Madrid, Spain 28040

GERALD J. GASTONY Dept. of Biology, Indiana University, Bloomington, IN 47405-6801

GARY K. GREER Biology Dept., Grand Valley State University, Allendale, MI 49401

CHRISTOPHER H. HAUFLE Dept. of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-2106

R. JAMES HICKEY Dept. of Botany, Miami University, Oxford, OH 45056

PAULO LABIACK Universidade Federal do Parand, Dept. de Botânica, 81531-980, Curitiba-PR, Brasil

ROBBIN C. MORAN New York Botanical Garden, Bronx, NY 10458-5126

NATHALIE NAGALINGUM Royal Botanical Garden Sydney, Sydney, NSW, Australia

CARL ROTHERFELD Botany Dept., Duke University, Durham, NC 27708

EMILY SESSA Botany Dept., University of Wisconsin-Madison, Madison, WI 53706

MICHAEL SUNDUE Pringle Herbarium, The University of Vermont, Burlington, VT 05405

JAMES E. WATKINS, JR. Harvard University, Cambridge, MA 02138

The “American Fern Journal” (ISSN 0002-8444) is an illustrated quarterly devoted to the general study of ferns. It is owned by the American Fern Society, and published at The American Fern Society, % Missouri Botanical Garden, P. O. Box 299, St. Louis, MO 63166-0299. Periodicals postage paid at St. Louis, MO, and additional entry.

Claims for missing issues, made 6 months (domestic) to 12 months (foreign) after the date of issue, and orders for back issues should be addressed to Dr. James D. Montgomery, Ecology III, 804 Salem Blvd., Berwick, PA 18603-9801.

Changes of address, dues, and applications for membership should be sent to the Membership Secretary.

General inquiries concerning ferns should be addressed to the Secretary.

Back volumes are available for most years as printed issues or on microfiche. Please contact the Back Issues Curator for prices and availability.

Subscriptions:

- Society Membership – USA, Canada, Mexico (includes Journal and Fiddlehead Forum) $30
- Society Life Membership – All other countries (includes Journal and Fiddlehead Forum) $40
- Society Life Membership – $360 (add $120 mailing surcharge for outside USA, Canada, Mexico)
- Regular Membership – USA, Canada, Mexico (includes Fiddlehead Forum) $15
- Regular Membership – All other countries (includes Fiddlehead Forum) $22
- Institutional Membership – $40 to USA, Canada, Mexico; $50 elsewhere (-$3 agency fee)

POSTMASTER: Send address changes to American Fern Journal, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.
The Anatomy and Occurrence of Foliar Nectaries in *Cyathea* (Cyatheaceae)

RICHARD A. WHITE* and MELVIN D. TURNER
Department of Biology, Duke University, P.O. Box 90338, Durham NC 27708

ABSTRACT.—This study reports the widespread occurrence of foliar nectaries in most New World species of the genus *Cyathea*. The anatomy of these glands and the variation in structure among the species is described. Some *Cyathea* species primitively lack glands, and the presence or absence of these glands and their structure correlate with recent molecular phylogenies.

KEY WORDS.—anatomy, *Cyathea*, glands, nectaries, phylogeny

In contrast to the widespread prominence of both floral and extrafloral nectaries in the flowering plants, nectaries have been reported in relatively few pteridophytes. Here we report the widespread occurrence of nectary-like foliar glands among many New World species of the tree fern genus *Cyathea*, and describe the anatomical structure of these glands for the first time.

Classifications of Cyatheaceae are still variable at the generic level. Some researchers include all species in *Cyathea*, while many others recognize three or more genera. DNA phylogenies have now greatly clarified the main subgroups of the scaly tree ferns (e.g., Korall et al., 2007, Janssen et al., 2008, and Bystriakova et al., 2011). The described differences in morphological features among these major groups have chiefly involved the details of scales and spores. Here, we report on a distinctive characteristic of a large group of species within the genus *Cyathea*: the occurrence of foliar nectaries or nectary-like glands on the fronds. These nectaries are often conspicuously present on *Cyathea* pinna and pinnule bases, but previously have been little noted in the literature.

There is a long history of studies of the structure and function of nectaries, both floral and extrafloral (Zimmerman, 1932; Fahn, 1979). The major focus in studies of floral nectaries in angiosperms is primarily on their role in the pollination biology of the species; studies of extrafloral nectaries tend to consider the nectaries in relationship to insect-plant mutualism and defense strategies of plants (e.g., Agrawal, 2011; Bentley, 1977; Fahn, 1979; Bentley and Elias, 1983; Elias, 1983; Elias and Sun An-ci, 1985; Freitas et al., 2001; Koptur, 1985, 1992; Rosumek et al., 2009).

Detailed anatomical descriptions of nectar glands are available for numerous flowering plants (e.g., Elias, 1983; Marginson et al., 1985; Durkee, 1987; McDade and Turner, 1997; Machado et al., 2008; Thadeo et al., 2008)). In

*Corresponding author
contrast, detailed studies of nectaries in the ferns are relatively rare. Early studies include a pioneer description of glands in *Pteridium* (Darwin, 1877). Another early study reported the presence of nectaries in *Angiopteris* and in two species of the *Cyathea* group of tree ferns (Bonnier, 1879), but provided little detail of anatomical structure. Over the many years of subsequent research additional examples of ferns with foliar nectaries have been added to the list: *Platycerium* (Dümmer, 1911); the *Aglaomorpha* and *Drynaria* group (Lüttge, 1971; Zamora and Vargas, 1974; Potes, 2010); *Polybotrya* and *Pleopeltis* (as *Polypodium*) (Koptur, 1982; Koptur et al., 1998).

As in many studies of angiosperm extrafloral nectaries, research on fern nectaries has focused on the composition of the exudate (e.g., Koptur et al., 1982) and the interaction between the plants and nectar-feeding ants (Tempel, 1983; Rashbrook et al., 1992; Koptur et al., 1998). Few of these fern nectaries have been described anatomically, with the notable exception of those of *Pteridium*, which have been described in ultrastructural detail (Power and Skog, 1987; Rumpf et al., 1994). Most recently the anatomy of nectaries of *Aglaomorpha* and *Drynaria* was described (Potes, 2010).

After the initial early report of nectaries in *Cyathea* species (e.g., Bonnier, 1879), more than a century elapsed before the next significant notice of their existence. However, some careful descriptions of new *Cyathea* species described recently do refer to aerophores, and to “dark circular or oblong patches”, as well as to nodules present at the bases of pinnae (Moran, 1991). Additionally, there are examples of structures at the pinna bases that are illustrated for the new species, but not described in the text (Moran, 1991; 1995). More recently, in the description of a new species of *Cyathea*, *C. planadae*, the presence of distinctive pads of tissue on the fronds and an association of these areas with feeding activity by ants was described (Arens and Smith, 1998). The discussion here, as with *Cnemidaria* (Mickel and Beitel, 1988), focused on these areas as being associated with aerophores and on their possibly being glandular.

In the recent description of a new species of *Cyathea* in Bolivia, *Cyathea dintelmannii*, reference is made to “...a conspicuous black spot...” at the termination of the pinna with the rachis of the leaves and to “... one black (when dried) glutinous spot...” at that location (Lehnert, 2006). This ... “black spot can be regarded as homologue [sic] with the nectaries found in *Cyathea planadae* ... where an interaction between the fern and ants has been documented.” (Arens and Smith, 1998; Lehnert, 2006).

Our examination of numerous species of *Cyathea* in the field, as liquid-preserved material and as dried herbarium specimens, confirms that these pinna-base glands in fact characterize a large group of species within the genus. We describe the anatomy of the glands, which differs from previously described nectaries in other ferns. Comparisons of the anatomical results with recent analyses of tree fern phylogeny may help elucidate the evolutionary origin of nectaries in the tree ferns.
Materials and Methods

The anatomy of the glands was examined in the *Cyathea* species listed in Table 1. In addition, the following non-*Cyathea* species were examined: *Sphaeropteris cooperi* (W.J. Hooker ex F. von Mueller) Tryon, *S. medullaris* (G. Forster) Bernhardt, *Alsophila firma* (Baker) Conant, and *A. polystichoides* Christ.

All vouchers are deposited in the Duke University Herbarium [DUKE] unless otherwise noted, e.g., Museo National de Costa Rica [CR], University of California [UC] and Lyndon State College Herbarium [LSC].

In addition to the anatomical study of preserved materials, a survey was made of herbarium collections (UC, DUKE and CR), based on which the presence or absence of glands was described for 161 species of *Cyathea*. This represents a large proportion of the total number of *Cyathea* species, which has been estimated to be between ca. 200 (Lehnert, 2011b) and 270 species (based on Tryon, 1970). The latter number includes Tryon’s estimated totals for

Table 1. Cyathea species included in the anatomical survey.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vouchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathea acutidens (Christ) Domin</td>
<td>White 200205 [DUKE]</td>
</tr>
<tr>
<td>Cyathea alata Copel.</td>
<td>P414; P419 [LSC]</td>
</tr>
<tr>
<td>Cyathea andina (H. Karst.) Domin</td>
<td>Conant 4888 [LSC]</td>
</tr>
<tr>
<td>Cyathea arborea (L.) Sm.</td>
<td>Conant 4893; Conant 4894 [LSC]</td>
</tr>
<tr>
<td>Cyathea armata (Sw.) Domin</td>
<td>Conant 4881 [LSC]</td>
</tr>
<tr>
<td>Cyathea baringtonii A.R. Sm. ex Lellinger</td>
<td>White & Lucansky 1970127 [DUKE]</td>
</tr>
<tr>
<td>Cyathea boringuena (Maxon) Domin</td>
<td>Conant 4872 [LSC]</td>
</tr>
<tr>
<td>Cyathea caracasana (Klotzsch) Domin</td>
<td>Conant 4884 [LSC]</td>
</tr>
<tr>
<td>Cyathea choricarpa (Maxon) Domin</td>
<td>White 200201 [DUKE]</td>
</tr>
<tr>
<td>Cyathea cocleana (Stolze) Lehner</td>
<td>Wilbur 11111 [DUKE]</td>
</tr>
<tr>
<td>Cyathea costaricensis Domin</td>
<td>McAlpin 1089 [DUKE]</td>
</tr>
<tr>
<td>Cyathea decomposita (Karsten) Domin</td>
<td>White 1969238 [DUKE]</td>
</tr>
<tr>
<td>Cyathea dejecta (Baker) Christenh.</td>
<td>Beitel 8517 [UC]</td>
</tr>
<tr>
<td>Cyathea delgodii Sternb.</td>
<td>White 199906 [DUKE]</td>
</tr>
<tr>
<td>Cyathea divergens Kunze</td>
<td>Soeder 90-3 [DUKE]</td>
</tr>
<tr>
<td>Cyathea fulva (M. Martens & Galeotti) Fée</td>
<td>White 1969226 [DUKE]</td>
</tr>
<tr>
<td>Cyathea furfuracea Baker</td>
<td>Conant 4880 [LSC]</td>
</tr>
<tr>
<td>Cyathea horrida (L.) Sw.</td>
<td>Conant 4873 [LSC]</td>
</tr>
<tr>
<td>Cyathea multiflora Sm.</td>
<td>White 199907; White 200207 [DUKE]</td>
</tr>
<tr>
<td>Cyathea mutica (H. Christ) Domin</td>
<td>White 200204 [DUKE]</td>
</tr>
<tr>
<td>Cyathea parvula (Jenman) Domin</td>
<td>Conant 4885 [LSC]</td>
</tr>
<tr>
<td>Cyathea planadaceae N.C.Arens & A.R.Sm.</td>
<td>Arens, s.n. [UC]</td>
</tr>
<tr>
<td>Cyathea poeppigii (Hook.) Domin</td>
<td>White 200202 [DUKE]</td>
</tr>
<tr>
<td>Cyathea pungens (Willd.) Domin</td>
<td>White 1969224 [DUKE]</td>
</tr>
<tr>
<td>Cyathea schiedeanæ (G. Presl) Domin</td>
<td>White 200206 [DUKE]</td>
</tr>
<tr>
<td>Cyathea senilis (Klotzsch) Domin</td>
<td>White & Lucansky 1969222 [DUKE]</td>
</tr>
<tr>
<td>Cyathea squamata (Klotzsch) Domin</td>
<td>White 1970159 [DUKE]</td>
</tr>
<tr>
<td>Cyathea squamulosa (I. Losch) R. C. Moran</td>
<td>White 200203 [DUKE]</td>
</tr>
<tr>
<td>Cyathea suprastrigosa (Christ) Maxon</td>
<td>White & Lucansky 1971035 [DUKE]</td>
</tr>
<tr>
<td>Cyathea tenera (J. Sm. ex Hook.) T. Moore</td>
<td>Conant 4865 [LSC]</td>
</tr>
<tr>
<td>Cyathea trichiata (Maxon)</td>
<td>White 199904 [DUKE]</td>
</tr>
</tbody>
</table>
Cyathea, Trichipteris, and Cnemidaria, and those Cyathea species he had assigned to Sphaeropteris and Alsophila. It also includes the species formerly classified as Hymenophyllopsis. Recent phylogenetic studies indicate that these groups are nested within Cyathea (Smith et al., 2006; Smith et al., 2008).

In order to study the anatomy of the glands, expanding croziers and frond axes were preserved in formalin-acetic-acid-alcohol (FAA). Samples were processed through a tertiary butyl alcohol dehydration series, embedded and sectioned in paraffin, and stained with safranin, fast green and iron hematoxylin (Johansen, 1940). In addition, fragments of dried herbarium specimens were rehydrated, embedded and sectioned.

Limited field observations were made of Cyathea mutica, C. chorica rpa, C. multiflora, C. delgadii, C. trichiata and C. poep pigii. Fronds of these species were examined for the presence of glands, liquid drops and ants.

RESULTS

Foliar glands in Cyathea spp. occur on the abaxial surface of the frond axes at the bases of the pinnae near their points of attachment to the rachis (Figs. 1 and 2). In most species with pinna-base glands, anatomically similar but much smaller glands occur on the bases of the pinnule stalks (Fig. 3).

The characteristic anatomy of the pinna axis immediately distal to the gland is histologically similar in the main stipe and rachis: there is an epidermis which bears trichomes and small scales, a few-seriate parenchymatous outer hypodermis and an inner hypodermis of elongate fiber-like sclerified cells. The anatomy of the leaf glands described below is distinctly different: no scales or hairs occur on the gland, and the cells of the gland are organized in characteristically distinct zones, which are absent in the non glandular regions.

No vascular bundles extend to or into the glands, and adjacent vascular strands of the nearest parts of the rachis and pinna lack any obvious modifications.

This review of the anatomical diversity of the glands among the tree ferns that were studied suggests three broad categories of glands, which have been designated the Cyathea delgadii (Type I), Cyathea multiflora (Type II) and Cyathea trichiata (Type III) types as exemplified by these species (Table 2). In addition, there are Cyathea species that lack glands.

Cyathea delgadii (Type I)

The most commonly occurring anatomical “type” of gland among the species of Cyathea we studied is represented by Cyathea delgadii.

Organography.—The pinna bases in croziers and young fronds bear a prominent rounded green waxy-appearing gland (Figs. 2 and 4). The gland in mature leaves is less prominent (Fig. 5). An aerophore is adjacent to the gland, is oval in shape and proximal to the gland on the pinna base.
Fig. 1-6. Type I foliar glands. 1. *Cyathea choricarpa*, expanding young frond showing prominent pinna-base gland and adjacent aerophore. 2. *C. delgadii*, crozier with some scales removed to expose glands. 3. *C. multiflora*, detail of expanding crozier with pinna-base gland adjacent to small aerophore. Small pinnule-base glands also visible. 4. *C. delgadii*, young crozier fragment, glands bare of the scarf covering the frond axes. 5. *C. delgadii*, pinna base of a mature frond with gland less raised. 6. *C. delgadii*, section of “Type I” gland showing 4 tissue zones. A = aerophore; c = rachis cortical parenchyma; e = epidermis; G = gland; g = ground tissue parenchyma of gland; s = subepidermal cell zone; t = zone of tanniferous cells.
Type I. *Cyathea delgadii* type	Gland bulging; secretory epidermis usually a single layer of anticlinally elongate cells; modest subepidermal zone; innermost parenchymatous zone prominent; fiber layer interrupted.	*Cyathea barringtonii* A.R. Sm. ex Lellinger; *Cyathea caracasana* (Klotzsch) Domín; *Cyathea choricarpa* (Maxon) Domín; *Cyathea cocleana* (Stolze) Lehner; *Cyathea decomposita* (Karsten) Domín; *Cyathea delgadii* Sternb.; *Cyathea divergens* Kunze; *Cyathea fulva* (M. Martens & Galeotti) Fée; *Cyathea horrida* (L.) Sw.; *Cyathea mutica* (H. Christ) Domín; *Cyathea pungens* (Willd.) Domín; *Cyathea schiedeana* (C. Presl) Domín; *Cyathea senilis* (Klotzsch) Domín; *Cyathea squamata* (Klotzsch) Domín; *Cyathea squamulosa* [I. Losch] R. C. Moran; *Cyathea suprastrigosa* (Christ) Maxon; *Cyathea tenera* [J. Sm. ex Hook.] T. Moore
Type II. *Cyathea multiflora* type	Gland bulging; one or two layered secretory epidermis of anticlinally elongate cells; distinctive subepidermal layer; inner zone of numerous vacuolated more or less isodiometric parenchyma cells; fiber layer interrupted	*Cyathea acutidens* (Christ) Domín; *Cyathea andina* (H. Karst.) Domín; *Cyathea multiflora* Sm.
Type III. *Cyathea trichiata* type	Gland flat (no bulge); secretory epidermis a single layer of cells less anticlinally elongate than the previous two types; subepidermal layer not distinctive; inner parenchymatous zone lacking; fiber layer not interrupted.	*Cyathea armata* (Sw.) Domín; *Cyathea trichiata* (Maxon) Domín
Glands lacking	No parenchymatous bulge; nonsecretory epidermis with hairs and scales present; hypodermal fibrous layer not interrupted.	*Cyathea alata* Copel.; *Cyathea arborea* (L.) Sm.; *Cyathea costaricensis* Domín; *Cyathea parvula* (Jenman) Domín; *Cyathea poepigii* (Hook.) Domín; Alsophila firma (Baker) D.S.Conant; Alsophila polystichoides H. Christ; Sphaeropteris cooperii (Hook. ex F. Muell.) R. Tryon; Sphaeropteris medullaris (G. Forster) Bernhardi.

An unusual feature seen only in *Cyathea delgadii* among the species we surveyed is an asymmetric distribution of unusually prominent glands on the pinnule bases along the pinnae. These are restricted to the distal region of each pinna and occur only on the pinnules of the acrosopic side of the pinna.
Anatomy.—Glands are prominently raised above the surrounding leaf surface (Figs. 2 and 4), and histological sections reveal that four main zones of cells compose the gland (Fig. 6). The epidermis of the gland is composed of a single layer of densely-staining anticlinally elongate cells. A thick cuticle covers the surface of the gland; no stomates are present, and scales and trichomes are absent. Subadjacent to this layer is a discrete subepidermal zone of parenchyma which is 3–6 cells seriate. These cells are more or less isodiametric in shape and highly vacuolated. They are larger than the epidermal cells but smaller than the parenchyma cells which characterize the parenchyma tissue of the leaf axis. Subadjacent to this zone of parenchyma is a zone of transversely-elongate cells which are usually densely stained, with granular cytoplasm. This tanniniferous layer is laterally continuous with the hypodermal fibrous layer of the pinna axis and rachis. Finally, subjacent to this tanniniferous zone is a zone of ground tissue parenchyma similar to the subjacent cortical ground tissue of the leaf axis.

Adjacent aerophores have numerous stomates and prominent intercellular spaces.

Numerous Cyathea species, including those formerly named Cnemidaria (see below), which were seen to have glands histologically similar to those of Cyathea delgadii include Cyathea borinquena (Fig. 7), C.caracasana, (Fig. 8), C. decomposita (Fig. 9), C. divergens (Fig. 10), C. furfuracea (Fig. 11), C. senilis (Fig. 12), C. squamata (Fig. 13), C. tenera (Figs 14 and 15). Other species included in the anatomical survey with Type I glands include C. barringtonia, C. fulva, C. gibbosa, C. horrida, C. planadeae, C. pungens, C. schiedeana, C. squamulosa and C. supstrigiosa.

Cyathea choricarpa (formerly Cnemidaria) (Type I)

Material was examined originally as Cnemidaria species. These have now been incorporated into Cyathea (Korall et al., 2007; Lehnert, 2011a). The anatomy of the glands, which is similar to that which characterizes most Cyathea species, is consistent with this.

Organography.—Glands in this species are recognized as bulbous waxy regions on the abaxial side of the leaflet base (Figs. 1 and 16). A bulge is present in young leaf material, but it is not as prominent in mature leaves. The gland tends to be somewhat elongate along the pinna base. A small aerophore is located immediately proximal to each gland.

Anatomy.—The epidermis of the gland is a single layer of anticlinally-elongate cells which are slightly larger than the cells which characterize the epidermis adjacent to the gland (Fig. 17). Subadjacent to the secretory epidermis is a zone of isodiametric parenchyma cells 6–10 cell layers deep. There is a gradation of cell size in this zone. The cells of the 3–4 layers immediately subjacent to the epidermis are smaller and more compact than the cells of the more internal layers. Immediately subjacent to this subepidermal parenchymatous zone is a zone composed of 10–12 layers of thick-walled cells. This zone is laterally continuous with the fibrous hypodermal layer of the pinna and rachis.
Figs. 7–12. Sections of Type I foliar glands showing tissue zonation. Figs 7–11 sections of glands from croziers; Fig 12. from a fully mature gland. 7. Cyathea borinquena. 8. C. caracasana. 9. C. decomposita. 10. C. divergens. 11. C. furfuracea. 12. C. senilis. c = rachis cortical parenchyma; e = epidermis; g = ground tissue parenchyma of gland; s = subepidermal cell zone; t = zone of tanniniferous cells.
The aerophore immediately adjacent to each gland (Fig. 16) has numerous stomata and prominent airspaces.

Three other species of *Cyathea* (formerly *Cnemidaria*) with gland anatomy similar to that of *Cyathea choricarpa* included in this survey are *C. cocleana*, *C. horrida*, and *C. mutica*.

Cyathea multiflora (Type II)

This species is characterized by the most structurally elaborate foliar glands seen in this study.

Organography.—A prominent bright green gland occurs on each pinna base on fresh croziers and expanding fronds. The glands appear as rounded or bulging, shiny, glabrous patches on the abaxial surface of the pinna base immediately distal on the pinna to its junction with the rachis (Fig. 3). Pinnule bases of this species have much smaller glands (Fig. 3), which have anatomy similar to that of the larger glands on the pinna. This is also true, for example for *Cyathea tenera* (Fig. 14). As in the other species of *Cyathea*, the glands on more mature and expanded fronds appear less prominent (Fig. 18).

In addition to the gland, there is a distinctive aerophore which tends to be a relatively small oval patch adjacent to the gland at its border with the rachis (Fig. 3; Fig. 18).

Anatomy.—The epidermal layer of the gland consists of a region of narrow anticlinally-elongate cells with densely staining cytoplasm and a thick cuticle. These cells are characterized by having prominent large nuclei and dense granular cytoplasm with small vacuoles (Fig. 20). Many of the cells in this epidermal layer are subdivided by periclinal cross walls, so that the palisade-like glandular epidermis varies locally from 1-seriate to 2-seriate. Stomata, trichomes and scales are absent. Immediately subjacent to this characteristic epidermis, is a 1- to 2-seriate zone of rounded isodiametric cells that are distinctly larger and lighter-staining than cells of surrounding layers (Figs. 19 and 20). Subjacent to this subepidermal zone, the fiber layer characteristic of the non-glandular area is interrupted. In place of hypodermal fibers, multiple layers of parenchyma cells compose a zone of cells which are smaller and more densely staining than those of the parenchymatous zone subjacent to the secretory epidermis (Fig. 19). This inner parenchymatous zone forms most of the characteristic bulge of the gland. Finally this latter zone is subtended by several layers of tanniniferous-staining cells which are similar to, and continuous with, the ground tissue of the pinna axis (Fig. 19).

Characteristic aerophores adjacent to each gland (Figs. 3 and 18) have numerous stomata and prominent air spaces.

Species in this survey characterized by gland anatomy similar to *Cyathea multiflora* include *Cyathea acutidens* (Fig. 21) and *Cyathea andina* (Fig. 22).

Cyathea trichiata (Type III)

Organography.—There is no prominently elevated glandular bulge in this species, but the glandular area is recognizable as an irregularly-shaped area of
Figs. 19–24. Type II and Type III foliar glands. 19. *Cyathea multiflora*, section showing Type II zonation. 20. *C. multiflora*, detail showing multiseriate epidermis, and subjacent parenchyma zone. 21. *C. acutidens*, section with Type II zonation. 22. *C. andina*, multiseriate epidermis, but zonation more comparable to Type I. 23. *C. trichiatia*, fragment dissected from crozier showing gland (bracketed by two lines from G) as non-elevated hairless patch on pinna base. 24. *C. trichiatia*, section of Type III gland lacking extensive subepidermal layers. A = aerophore; e = 1–2-seriate epidermis; G = gland; p = multiple-layered parenchymatous zone of gland; s = subepidermal cell zone; t = zone of tanniferous cells.
the epidermis at the pinna base which lacks trichomes and scales (Fig. 23). An aerophore is associated with the pinna base, and is clearly separate from the gland. Small amounts of a liquid secretion were observed on glands in field observations of this species.

Anatomy.—The epidermis of the gland is composed of one or two rows of cells which are anticlinally elongate and larger than the cells of the single layered epidermis of the pinna adjacent to the gland (Figs. 24 and 25). The secretory epidermis has a thick cuticle, and the area has no stomata, hairs or scales. Subjacent to the epidermis is a one- to three-layered zone of isodiametric, highly vacuolated parenchyma cells. Finally, subjacent to this subepidermal zone is a multi-layered zone of densely-staining fiber cells. These cells are longitudinally elongate with respect to the pinna axis and are continuous with, though somewhat less elongate than, the fibrous layer which is characteristic of the main axis and rachis (Fig. 25). Unlike the other gland types, there is no interruption of the fibrous layer below the gland. Also, there is no extensive inner parenchymatous zone and consequently the glands are not elevated or bulging.

The characteristic aerophore has numerous stomata and prominent airspaces.

Cyathea armata (Fig. 26) has glands similar to those of _Cyathea trichiata_.

Cyathea Species Lacking Glands

The anatomical survey revealed that the following _Cyathea_ species lack glands: _Cyathea alata_, _C. arborea_, _C. costaricensis_, _C. parvula_, and _C. poeppigii_. The survey of herbarium specimens confirmed the lack of glands in these species, and in addition noted the lack of glands in several other species (Table 3).

No glands were observed on the species which were examined of _Alsophila_ (e.g., _Alsophila firma_ and _A. polystichoides_) and _Gymnosphaera_. The species of _Sphaeropteris_ that were examined anatomically (_Sphaeropteris cooperi_, and _S. medullaris_) also lacked glands. However, observations of herbarium specimens suggest that glands similar to those of _Cyathea_ spp. may be present in _Sphaeropteris robinsonii_ (Copel.) R. M. Tryon of the Philippines, and possibly in a few other _Sphaeropteris_ species. Except for _S. robinsonii_, observations of herbarium specimens of numerous species of the other Cyatheaceous genera indicate a general lack of glands throughout Cyatheaceae other than in _Cyathea_.

Field observations have so far provided few data in regard to the function of the putative pinna-base nectaries in _Cyathea_ species. In the _Cyathea multiflora_ and _C. delgadii_ types, the glands are large and bright green in young expanding leaves (Fig. 3; Fig. 2), but much less conspicuous in mature leaves (Fig. 18; Fig. 5). Despite their prominence, the glands on young fronds of both these species were never observed to be wet with secretions when closely examined in the field. However, small droplets of liquid were observed on the pinna-base glands of young expanded fronds of _Cyathea choricarpa_, and small amounts of secreted liquid were consistently present on glands of _Cyathea trichiata_, both
FIGS. 25–30. Foliar glands: Types III, II, and I. 25. *Cycathea trichiata*: characteristic Type III organization. 26. *C. armata*: Mature Type III gland. 27. *C. acutidens*: mature pinna base showing evidence of insect damage to gland (dark wounds on gland), Type II gland. 28. *C. multiflora*: possible evidence of insect damage to gland (small dark lesions), Type II gland. 29. *C. delgadii* [White & Lucansky 196824 (DUKE)]: Gland of dry herbarium specimen visible as dark shrunken area adjacent to aerophore, Type I gland. 30. *C. multiflora* [Wilbur & Luteyn 18252 (DUKE)]: Dark shriveled gland (Type II) present next to aerophore. A= aerophore; e= epidermis; G= gland; s= subepidermal cell zone; t= zone of tanniniferous cells.
Table 3. *Cyathea* glands presence/absence based on herbarium survey.

Old World *Cyathea* species

NO GLANDS:

<table>
<thead>
<tr>
<th>Species</th>
<th>Representative Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathea alata Copel.</td>
<td>White 1969561 [DUKE]</td>
</tr>
<tr>
<td>Cyathea decurrens Copel.</td>
<td>Muzik 19006 [DUKE]</td>
</tr>
<tr>
<td>Cyathea epaleata (Hollttum)Hollttum</td>
<td>M. L. Grant 4233 [UC]</td>
</tr>
<tr>
<td>Cyathea robertsiana (F.Muell.) Domin</td>
<td>van der Werff & Gray 17037 [UC]</td>
</tr>
</tbody>
</table>

New World *Cyathea* species

NO GLANDS:

<table>
<thead>
<tr>
<th>Species</th>
<th>Representative Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathea arborea (L.) Sm.</td>
<td>Crosby & Anderson 1044 [DUKE]</td>
</tr>
<tr>
<td>Cyathea costaricensis Domin</td>
<td>Hellwig & Whitaker 1437 [DUKE]</td>
</tr>
<tr>
<td>Cyathea myosuroides (Liebm.) Domin</td>
<td>Mexia 9244 [UC]</td>
</tr>
<tr>
<td>Cyathea parvula (Jenman) Domin</td>
<td>Hespelheide 957 [DUKE]</td>
</tr>
<tr>
<td>Cyathea poepiggii (Hook.) Domin</td>
<td>White & Lucansky 1968212 [DUKE]</td>
</tr>
</tbody>
</table>

Formerly Hymenophyllopoisiss:

<table>
<thead>
<tr>
<th>Species</th>
<th>Representative Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathea aspleniodes (A. C. Sm.) Christenh.</td>
<td>Maguire & Poliitti 27764 [UC]</td>
</tr>
<tr>
<td>Cyathea ctenitoides (Lellinger) Christenh.</td>
<td>Wurdack 34175 [UC]</td>
</tr>
<tr>
<td>Cyathea dejecta (Baker) Christenh.</td>
<td>Beitel 8517 [UC]</td>
</tr>
<tr>
<td>Cyathea hymenophylloides (L. D. Gómez) Christenh.</td>
<td>Maguire 32895 [DUKE]</td>
</tr>
<tr>
<td>Cyathea tepuana Christenh.</td>
<td>Liesner 25302 [UC]</td>
</tr>
<tr>
<td>Cyathea trichomanoides Christenh.</td>
<td>Beitel 85314 [UC]</td>
</tr>
</tbody>
</table>

GLANDS PRESENT:

<table>
<thead>
<tr>
<th>Species</th>
<th>Representative Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyathea acutidens (Christ) Domin</td>
<td>Stone 2104 [DUKE]</td>
</tr>
<tr>
<td>Cyathea alatissima (Stolze) Lehert</td>
<td>van der Werff et al. 19540 [UC]</td>
</tr>
<tr>
<td>Cyathea alfonsoniana L. D. Gomez</td>
<td>Trusty 528 [DUKE]</td>
</tr>
<tr>
<td>Cyathea amabilis (C. V. Morton) Lehert</td>
<td>Meier & Molina 9217 [UC]</td>
</tr>
<tr>
<td>Cyathea amazonica R. C. Moran</td>
<td>Öllgard 99065 [UC]</td>
</tr>
<tr>
<td>Cyathea anacampta Alston</td>
<td>White & White 197073 [DUKE]</td>
</tr>
<tr>
<td>Cyathea andicola Domin</td>
<td>Forero et al. 6803 [UC]</td>
</tr>
<tr>
<td>Cyathea andina (H. Karst.) Domin</td>
<td>White & Lucansky 1970150 [DUKE]</td>
</tr>
<tr>
<td>Cyathea aristata Domin</td>
<td>Mickel 5935 [UC]</td>
</tr>
<tr>
<td>Cyathea armata (Sw.) Domin</td>
<td>Watt 194 [UC]</td>
</tr>
<tr>
<td>Cyathea aspera (L.) Sw.</td>
<td>Nicolson 1934 [DUKE]</td>
</tr>
<tr>
<td>Cyathea atahualpa (R.M. Tryon) Lellinger</td>
<td>Hutchinson & Wright 6922 [UC]</td>
</tr>
<tr>
<td>Cyathea aterrima (Hook.) Domin</td>
<td>van der Werff et al. 16327 [UC]</td>
</tr>
<tr>
<td>Cyathea atrovirens (Langsd. & Fisch.) Domin</td>
<td>Hatschbacher 27670 [UC]</td>
</tr>
<tr>
<td>Cyathea austropallescens Lehert</td>
<td>Smith, León & Young 13134 [DUKE]</td>
</tr>
<tr>
<td>Cyathea barrassontii A.R. Sm. ex Lellinger</td>
<td>White & Lucansky 1970126 [DUKE]</td>
</tr>
<tr>
<td>Cyathea bicrenata Liebm.</td>
<td>Hellwig 302 [DUKE]</td>
</tr>
<tr>
<td>Cyathea bipinnata (R.M.Tryon) R.C.Moran</td>
<td>van der Werff, Gray, & Tipas 12002 [UC]</td>
</tr>
<tr>
<td>Cyathea bipinnatifida (Baker) Domin</td>
<td>Beitel 85102 [UC]</td>
</tr>
<tr>
<td>Cyathea boliviana R. M. Tryon</td>
<td>Smith, Quintana & Garcia 13415 [DUKE]</td>
</tr>
<tr>
<td>Cyathea borinquena (Maxon) Domin</td>
<td>Blomquist 11740 [UC]</td>
</tr>
<tr>
<td>Cyathea braedei (Windisch) Lellinger</td>
<td>van der Werff, Vasquez & Jaramillo 10179</td>
</tr>
<tr>
<td>Cyathea brevistipes R. C. Moran</td>
<td>van der Werff & Palacios 9185 [UC]</td>
</tr>
<tr>
<td>Cyathea brunnescens (Barrington) R. C. Moran</td>
<td>Moran & Rohrbach 5297 [UC]</td>
</tr>
<tr>
<td>Cyathea caracasana (Klotzsch) Domin</td>
<td>Lehnter 998 [DUKE]</td>
</tr>
<tr>
<td>Cyathea characoeae Stolze</td>
<td>Lellinger & de la Sota 853 [CR]</td>
</tr>
<tr>
<td>Cyathea choricarpa (Maxon) Domin</td>
<td>Wilbur 27576 [DUKE]</td>
</tr>
</tbody>
</table>
Table 3. Continued.

Cyathea cnemidaria Lehnert
Cyathea coclea (Stolze) Lehnert
Cyathea colombiana Domin
Cyathea conjugata (Hook.) Domin
Cyathea corcovadensis (Raddi) Domin
Cyathea cyathoides (Desv.) Kramer
Cyathea decomposita (Karsten) Domin
Cyathea decorata (Maxon) R.M. Tryon
Cyathea decurrentiloba Domin
Cyathea delgadii Sternb.
Cyathea dicromatolepis (Fée) Domin
Cyathea dintelmannii Lehnert
Cyathea dissimilis (C.V. Morton) Stolze
Cyathea divergens Kunze
Cyathea dudleyi R. M. Tryon
Cyathea ebenina H. Karst
Cyathea ewanii Alston
Cyathea frigida (H. Karst.) Domin
Cyathea fulva (M. Martens & Galeotti) Fée
Cyathea furfuracea Baker
Cyathea gibbosa (Klotzsch) Domin
Cyathea gracilis Griseb.
Cyathea grandifolia Willd.
Cyathea grayuill A. Rojas
Cyathea guentheriana Lehnert
Cyathea hemiepiphytica R. C. Moran
Cyathea herzogii Rosenst.
Cyathea hirsuta C. Presl
Cyathea horrida (L.) Sw.
Cyathea iheringii (Rosenst.) Domin
Cyathea karsteniana (Klotzsch) Domin
Cyathea lasiosora (Kuhn) Domin
Cyathea lechleri Mett.
Cyathea leucolitopsata Alston
Cyathea lindenia C. Presl
Cyathea lindigii (Baker) Domin
Cyathea lockwoodiana (P.G. Windisch) Lellinger
Cyathea macrocarpa (C. Presl) Domin
Cyathea macrosgora (Baker) Domin
Cyathea marginalis (Klotzsch) Domin
Cyathea maxonii Underw. ex Maxon
Cyathea meridensis H. Karst.
Cyathea mexiae Copel.
Cyathea microdonta (Desv.) Domin
Cyathea moranii Lehnert
Cyathea mucilaginea R. C. Moran
Cyathea multiflora Sm.
Cyathea mutica (H. Christ) Domin
Cyathea neblinae A. R. Sm.
Cyathea nephele Lehnert
Cyathea nervosa (Maxon) Lehnert

Metcalf & Cuatrecasas 30122 [UC]
Wilbur 11111 [DUKE]
Rubio, Tipaz & Taicz 21114 [UC]
White & White 197027 [DUKE]
Mexia 4684 [UC]
Cremers 9834 [DUKE]
White & White 1970104 [DUKE]
Croat & Watt 70293 [UC]
Hodel 1466 [UC]
Stone 2700 [DUKE]
Brade 8594 [UC]
von der Werff et al. 20269 [UC]
Liesner & Holst 20435 [UC]
Hellwig 1433 [DUKE]
Palacios & van der Werff 3748 [UC]
von der Werff, et al. 15823 [UC]
Schuettpelz 208 [DUKE]
von der Werff & Palacios 9425 [UC]
White & Lucansky 1969237 [DUKE]
Hellwig & Whitaker 1472 [DUKE]
White & White 197017 [DUKE]
Crosby et al. 316 [DUKE]
Wilbur 7781 [DUKE]
Hodel 1486 [UC]
Vargas, et al. 2179 [UC]
von der Werff, Gray & Tipas 11951 [UC]
von der Werff et al. 18570 [UC]
Mexia 4956 [UC]
White & Lucansky 1970130 [DUKE]
Brade 9842 [UC]
Neves, Hammel & Herrera 8529 [UC]
Meier et al. 3962 [UC]
von der Werff & Palacios 10320 [DUKE]
Neill et al. 15286 [DUKE]
Olgaard 99065 [UC]
von der Werff & Rivero 8761 [UC]
von der Werff & Ortiz 5681 [UC]
White & White 197047 [DUKE]
Boudrie MB-3024 [UC]
von der Werff et al. 18171 [UC]
Liesner 19544 [UC]
Wilbur & Luteyn 18370 [DUKE]
Duno & Rina 1469 [UC]
Mexia 5175 [UC]
Grayum 3069 [DUKE]
Lehnert 1076 [UC]
von der Werff et al. 13295 [UC]
Wilbur & Luteyn 18252 [DUKE]
Lellinger 1281 [DUKE]
Stergios 11892 [UC]
von der Werff, et al. 8562 [UC]
Mexia 6291 [UC]
Cyathea nesiotaica (Maxon) Domin	Trusty 527 [DUKE]
Cyathea nigripes (C. Chr.) Domin	Forero & Jaramillo 5315 [DUKE]
Cyathea nodulifera R. C. Moran	Grayum, Herrera & Santana 7800 [CR]
Cyathea notabilis Domin	Trusty 533 [DUKE]
Cyathea obnoxia Lehnhert	Lehnhert 802 [UC]
Cyathea onusta Christ	Wilson & Wilson 69-26 [UC]
Cyathea oxapampana Lehnhert	Mellado & Monteagudo 0464 [UC]
Cyathea palaciosii R.C. Moran	Neill, et al. 14437 [UC]
Cyathea panamensis Domin	Lellinger & de la Sota 374 [CR]
Cyathea parianensis (P. G. Windisch) Lellinger	Meier & Elsner 6647 [UC]
Cyathea parvifolia Sodiro	van der Werff & Palacios 9185 [UC]
Cyathea patens H. Karst.	Lehnhert 950 [DUKE]
Cyathea pauciflora (Kuhn) Lellinger	White & Lucansky 1970125 [DUKE]
Cyathea petiolata (Hook.) R. M. Tryon	Croat 4299 [DUKE]
Cyathea phalerata Mart.	White & White 197046 [DUKE]
Cyathea piloza Murillo & Murillo	Betancur et al. 3213 [UC]
Cyathea pinnula (H. Christ) Domin	Croat 66590 [DUKE]
Cyathea planodae N.C. Arems & A.R.Sm.	Palacios & Freine 4988 [UC]
Cyathea platylepis (Hook.) Domin	Liesner, Steyermark & Holst 20873 [UC]
Cyathea plicata Lehnhert	Lehnhert 844 [UC]
Cyathea pseudonanna (L.D. Gómez) Lellinger	Moran 4013 [UC]
Cyathea punctata R.C.Moran & B.Ölg.	Lehnhert 1581 [UC]
Cyathea pungens (Willd.) Domin	White & Lucansky 1969224 [DUKE]
Cyathea purpurea C.V. Morton	Huber 11879 [UC]
Cyathea roraimensis Domin	Liesner & Stannard 16919 [UC]
Cyathea ruiziana Klotzsch	Rodin 8856 [UC]
Cyathea sagittifolia (Hook.) Domin.	van der Werff et al. 21185 [UC]
Cyathea schiedeana (C. Presl) Domin	Hecking 1438 [DUKE]
Cyathea schlimii (Mett. ex Kuhn) Domin	Morton 7588 [DUKE]
Cyathea senilis (Klotzsch) Domin	MacDougall et al. 4023 [UC]
Cyathea serpens (R. M.Tryon) Lehnhert	White & Lucansky 1969222 [DUKE]
Cyathea sipapoensis (R.M. Tryon) Lellinger	Mellado & Monteagudo 464 [UC]
Cyathea speciosa Willd.	Maguire & Politi 28765 [UC]
Cyathea spectabilis (Kunze) Domin	White & Lucansky 1969223 [DUKE]
Cyathea squamata (Klotzsch) Domin	Fendler 25 [UC]
Cyathea squamipes H. Karst.	White & White 197016 [DUKE]
Cyathea squamulosa [I. Losch] R. C. Moran	Gentry et al. 55093 [UC]
Cyathea squarrosoa (Rosenst) Domin	Wilbur & Stone 8914 [DUKE]
Cyathea stipularis (H. Christ) Domin	Brade 405 [UC]
Cyathea stolzei A.R. Sm. ex Lellinger	Wilbur & Luteyn 18299 [DUKE]
Cyathea straminea H. Karst.	Kennedy 2750 [DUKE]
Cyathea subincisa (Kunze) Dom.	Palacios & Tirayn 12952 [UC]
Cyathea suprapilosa Lehnhert	Wood 14938 [UC]
Cyathea suprastrigosa (Christ) Maxon	Croat 79065 [UC]
Cyathea surinamensis (Miq.) Domin	Stone 2023 [DUKE]
Cyathea tenera [J. Sm. ex Hook.] T. Moore	McDowell 4225 [DUKE]
Cyathea thelypteroides A. R. Smith	Morton 5492 [DUKE]
Cyathea thysanolepis (Barrington) A. R. Sm.	van der Werff, et al. 16323 [UC]
Cyathea tortuosa R. C. Moran	Boom & Weitzman 5825 [UC]
Cyathea trilii (Desv.) K. U. Kramer	van der Werff, et al. 16542 [UC]
Cyathea trichiate (Maxon) Domin	van der Werff, et al. 19965 [UC]
	Wilbur & Luteyn 18225 [DUKE]
in the field and in the greenhouse. A small number of ants was observed on fronds of some plants of *Cyathea choricarpa*, but ants were not observed visiting the glands. Gland surfaces in some species (e.g. *C. acutidens*, Fig. 27; *C. multiflora*, Fig. 28) were frequently observed to be damaged and scarred, possibly due to feeding by ants or other insects. The glands of *Cyathea acutidens* were heavily damaged in this way, including the small pinnule-base glands.

The review of selected herbarium sheets indicates that indeed glands can be identified on the dried leaves of *Cyathea* species. These structures appear as dark, often shiny and shriveled spots, and are located where glands are seen to occur in live plants (*Cyathea delgadii*, Fig. 29; *C. multiflora*, Fig. 30; *Cyathea horrida*, Fig. 31). Some of these spots appear to have visible surface deposits of dried secretion, and others appear to be sticky, with spores and sporangia attached to the gland areas (e.g., *Cyathea cocleana* (Fig. 32).

Table 3 summarizes our herbarium survey of *Cyathea* foliar glands. For each species cited, a single representative specimen is listed. The four species we examined of Old World *Cyathea* (the *Cyathea decurrens* group) lack glands. Among the New World species surveyed, there were five species which were observed to lack glands, in addition to six glandless species formerly members of the genus *Hymenophyllum*. Glands were observed to be present in specimens of the remaining 146 *Cyathea* species surveyed.

Where species were included in both the anatomical survey and the herbarium survey, the observations are consistent. Of the 15 *Cyathea* species in the herbarium survey that lack nectaries, the absence of glands was confirmed anatomically for five of them. Similarly, of the 146 gland-bearing species in the herbarium survey, the glands were studied anatomically for 25 species.

DISCUSSION

The anatomy of the foliar glands in the species of *Cyathea* which were examined is distinctly different from the foliar nectaries that have been

Cyathea tryonorum (Riba) Lellinger	White & White 197049 [DUKE]
Cyathea tuerckheimii Maxon	Hallberg 1531 [UC]
Cyathea tungurahueae Sodiro	Wilson et al. 2770 [UC]
Cyathea uleana (A. Samp.) Lehnert	Kessler et al. 7289 [UC]
Cyathea ursii (H. Christ) Domin	Anderson 13415 [DUKE]
Cyathea usnikiensis (Maxon) Lellinger	Hammel 8710 [DUKE]
Cnemidoria varians R. C. Moran	Valdespino & Aranda 139 [UC]
Cyathea venezuelensis A. R. Smith	Steyermark et al. 21547 [UC]
Cyathea villosa Humb. & Bonpl. ex Willd.	Hatschbach 29880 [UC]
Cyathea weatherbyana (C.V. Morton) C.V. Morton	Mears & Adersen 5390 [UC]
Cyathea wendlandii (Mott. ex. Kuhn) Domin	White & Lucansky 1968185 [DUKE]
Cyathea werffii R.C. Moran	van der Werff & Gudino 11386
Cyathea williamsii (Maxon) Domin	Foster & Kennedy 1878 [DUKE]
Cyathea windischiana A. R. Smith	van der Werff, et al. 16207
Cyathea xenoxyloxa Lehnert	Kessler et al. 7220 [UC]
previously described for a few other species of ferns (e.g., Bonnier, 1879; Power and Skog, 1967; Potes, 2010). We have identified three distinctive anatomical features which characterize Cyathea glands: (1) the cells of the epidermis of the gland can be distinguished from the epidermal cells adjacent to the glands. The secretory epidermal cells of the gland are densely staining, anticlinally elongate, have a thick cuticle, and scales, scurf and trichomes are absent; (2) subjacent to the epidermis there is a subepidermal zone of a few to several layers of larger more highly vacuolated parenchyma cells; and (3) subjacent to this latter zone is an inner zone of parenchyma and an interruption of the fibrous hypodermal zone (except for Type III) characteristic of adjacent areas of the pinna axis and rachis. We have observed no modification or specialization of vascular tissue associated with nectaries in any Cyathea species.

The glands of the Cyathea species we reviewed can be organized into three general groups. This characterization of gland “types” is not intended to be rigid, however. The detailed anatomical structure of the glands in Cyathea varies from the more standard and general form which is widely distributed among the species we examined (Type I) to a more elaborate and distinctive type found in only a few species (Type II), to a form which is far less elaborate in anatomy compared to the other types, with less modified epidermal cells and fewer cells composing the subjacent parenchyma zones. These most simple glands are not associated with an interruption of the fibrous layer, and do not form an elevated bulge on the leaf surface (Type III).

The presence of nectaries varies among the species in Cyathea. As noted, in addition to species with nectaries, there are Cyathea species which lack them. The presence and absence of glands among species of a given genus has been reported in other genera (e.g., Pleopeltis as Polypodium: P. plesiosorus Kunze and P. furfuraceum Schltdl. & Cham. lack glands (Koptur et al., 1998). In this
survey, as noted earlier, Alsophila and Gymnosphaera consistently lack glands. Although nearly all species of Sphaeropteris we examined lacked glands, a very few species appear to have them (e.g., S. robinsonii).

Based on these results compared with recent phylogenetic analyses, the presence and structure of the foliar glands appear to have potential value as markers of major clades within Cyathea. The members of the earliest diverging branch of the genus, the Old World Cyathea decurrens group (e.g., Conant et al., 1995, 1996; Korall et al., 2007; Janssen et al., 2008; Bystriakova et al., 2011), lack these glands, as do the other genera of Cyatheaceae (viz. Alsophila, Gymnosphaera and some species of Sphaeropteris). Within another early branch of the Cyathea clade, which includes the C. armata group of Korall et al. (2007), several species were observed to lack glands, including C. arborea, C. parvula and C. poeppigii. However, within this group there is a distinctive sub-group, the Trichipteris armata group of Barrington (1978) and Gastony (1979), including C. armata, C. trichiata, C. stipularis and C. nesiotiaca, which do have glands. It is noteworthy that the glands of C. armata and C. trichiata are of the simplest anatomical type we have seen (Type III).

A large clade of New World Cyathea species comprising the Cnemidaria group, the Cyathea gibbosa group, and the Cyathea divergens group (sensu Conant et al., 1995, 1996; Korall et al., 2007) includes most species of this genus. The members of this large group that we have examined all possess well-developed foliar glands of Type I or Type II. Although we made only a modest anatomical survey of species, the review of herbarium specimens has identified the presence of foliar glands in numerous other species of Cyathea throughout these groups. Thus, these more elaborate, more prominent foliar glands appear to be a shared derived characteristic which marks the largest clade within New World Cyathea.

The presence of the group of Cyathea species with Type III glands (e.g., C. armata, C. trichiata, and C. stipularis) within a clade that otherwise lacks glands (e.g., C. arborea, C. parvula and C. poeppigii) is problematic. Possible explanations include: (1) the common ancestor of this clade with the Cnemidaria-C. gibbosa-C. divergens group had glands, and the glandless C. armata group members have lost glands; (2) the C. armata/ C. trichiata gland-bearing subgroup represents an independent, parallel or convergent origin of glands; or (3) it is possible that an ancient hybridization between an ancestor of the C. armata/ C. trichiata species group and an early member of the gland-bearing Cnemidaria-C. gibbosa-C. divergens group would explain the presence of glands in this group. The glandless Cyathea arborea is known to form hybrids with different gland-bearing Cyathea species today (Conant, 1975; Caluff, 2002). Early members of the two groups might similarly have been able to hybridize.

The group of Cyathea species that was formerly considered the genus Hymenophyllopsis has recently been reclassified as subgenus Hymenophyllopsis of Cyathea (Christenhusz, 2009). This group has been weakly supported as the sister group to all other New World Cyathea species (Korall et al., 2007), or sister to a large group corresponding to the Cnemidaria-C. gibbosa-C. divergens group (Janssen et al., 2008; Bystriakova et al., 2011). The observed
lack of pinna-base glands in *Cyathea* (*Hymenophyllopsis*) *dejecta* may be consistent with either position. On the other hand, the absence of glands might be expected from its great reduction in size and complexity, even if *Hymenophyllopsis* was derived from gland-bearing *Cyathea* ancestors.

The presence of nectaries marks a large group of *Cyathea* species and the shared presence of nectaries helps unify the group which contains most New World *Cyathea* species. This includes the species formerly included in the genus *Cnemidaria* (Korall *et al*., 2007; Lehnert, 2011a), *Trichipteris* (Lellinger, 1987) and a group of *Cyathea* species formerly included in *Sphaeropteris* (Tryon, 1970; Windisch, 1977, 1978).

The comparatively simple morphology and anatomy of the glands in the *C.armata/C. trichiata* group may well represent the most primitive state of the gland seen in extant gland-bearing *Cyathea*.

As mentioned earlier, although all the *Sphaeropteris* species we examined anatomically lack glands, herbarium specimens of *S. robinsonii* of the Phillipines (e.g., Ramos & Edanó, Bureau of Sci. 47350 [UC]) do have dark areas similar in appearance and position to the pinna-base glands of *Cyathea* species. An anatomical examination of this and related *Sphaeropteris* species is needed. If pinna-base nectaries are indeed present in this one or a few *Sphaeropteris* species, most likely they will have evolved independently from the *Cyathea* nectaries reported here.

In previous tree fern literature, reference is made to observations of glands and aerophores at the base of fern pinnae. Ants have been observed on “glabrous pads at the base of primary pinnae” (Arens and Smith, 1998), “swollen dark glossy aerophores” have been described (Holttum and Edwards, 1983), dark spots have been observed on herbarium specimens (Arens and Smith, 1998) and reference has been made to the need to clarify “the dark spots at the base of each pinna...regarding its fundamental origin as a possible nectary or aerophore” (Mickel and Beitel, 1988; Mickel and Smith, 2004; Lehnert, 2006).

It is clear that there has been some confusion in the literature in distinguishing between pinna-base glands and aerophores. Our observations confirm that these glands have a distinctive anatomy and that they exist as structures independent of the adjacent aerophores. Functionally, they have been shown to have exudate of interest to ants (Arens and Smith, 1998), and to have fungi associated with them, reflecting the likely presence of sugary exudate. The dark spots on herbarium specimens have been useful in identifying the presence and location of nectaries. All of this is to say that careful observations are necessary in order to describe the presence of nectaries and to distinguish these from aerophores.

Field observations have so far provided few data in regard to the function of the pinna-base glands in *Cyathea* species. In *Cyathea multiflora*, and *C. delgadii*, the glands are large and bright green in young expanding leaves, but much less conspicuous in mature leaves. Despite their prominence, the glands on young fronds of both these species were never observed to be wet with secretions when examined closely in the field. *Cyathea* leaf glands are not vascularized, and this may explain the very low secretion rates that we
observed. However, droplets of liquid were observed on the pinna-base glands of young expanded fronds of *Cyathea choricarpa*, and small amounts of secreted liquid were consistently present on glands of *Cyathea trichia*, both in the field and in the greenhouse. A small number of ants was observed on the fronds of some plants of *Cyathea choricarpa*, but were not observed in association with the glands. The surfaces of glands in some species, for example in *Cyathea acutidens*, were frequently observed to be damaged and scarred, possibly due to feeding by ants or other insects.

On the basis of these anatomical studies, their location on the leaves, and the modest observations of droplets, and insect activity, we have concluded that these glands are indeed nectaries. In support of this conclusion there is an obvious need for more extensive field observations and greenhouse studies as well as chemical analyses of the exudate. The presence or absence of glands and the variation in gland anatomy may well be useful as markers in analyses of species relationships within a genus and among fern families. A broader survey of the presence or absence of fern glands, their distribution and their anatomical structure is fully warranted.

Acknowledgments

We thank the following people for their advice, materials and technical assistance: David Conant, Marcus Lehnert, Robin Moran, Kathleen Pryer, Amber Ratchford, and Alan Smith. We also acknowledge the support of the herbarium curators of CR, DUKE, LSC and UC.

Literature Cited

An Expanded Plastid Phylogeny of *Marsilea* with Emphasis on North American Species

W. Mark Whitten

Florida Museum of Natural History, 385 Dickinson Hall, Gainesville, FL 32611-7800, email: whitten@flmnh.ufl.edu

Colette C. Jacono

Center for Aquatic and Invasive Plants, University of Florida, 7922 NW 71st Street, Gainesville, FL 32653-3701, email: Colette.C.Jacono@aphis.usda.gov

Nathalie S. Nagalingum

Royal Botanic Garden Sydney, National Herbarium of New South Wales, Mrs Macquaries Road, Sydney, NSW, Australia, 2000, email: nathalie.nagalingum@rbgsyd.nsw.gov.au

ABSTRACT.—Ferns of the genus *Marsilea* (water clover) are potentially invasive aquatic and wetland plants. They are difficult to identify to species because of subtle diagnostic characters, the sterile condition of many specimens, and unresolved taxonomic problems. We sequenced four plastid regions (*rbcL*, *rps4*, *rps4-trnS* spacer, and *trnL*-F spacer) from 223 accessions across ca. 38 species. Our goals were to: 1) attempt to identify problematic *Marsilea* specimens from the southeastern U.S., and 2) assess species delimitation using molecular data. Florida specimens previously identified as *M. aff. oligospora* do not match true *M. oligospora* (native to the western USA), and might represent an undescribed native species. The molecular data fail to resolve many species as monophyletic within the New World *Marsilea* section *Nodorhizae*. The data reveal two strongly supported clades within section *Nodorhizae*: 1) A western U.S. /Mexican clade; and 2) A U.S. Gulf coastal plain/Florida/Caribbean clade. This DNA/morphology discordance suggests that these taxa either may have hybridized extensively or that the number of *Marsilea* species within these clades may be overestimated. Either case warrants the addition of nuclear data sets and reevaluation of the species boundaries within the genus.

KEY WORDS.—*Marsilea*, phylogenetics, plastid, species delimitations

Marsilea L. (ca. 50 spp.) occur worldwide as two ecological types: 1) true aquatic species with glabrous leaves and fleshy rhizomes that inhabit more permanent water bodies, and 2) semi-aquatic species with hairy leaves and tough, fibrous rhizomes that prefer fluctuating wetland habitats and prevail through seasonal extremes in wet and dry periods (Jacono and Johnson, 2006). *Marsilea* have few dependable morphological characters on which to base species-level identifications. Phenotypic plasticity is widespread, and sporocarps, which contain many characters used for species delimitation, are commonly absent in field populations. Because identification of *Marsilea* based upon morphology is so difficult, molecular data might provide more reliable tools for identification.

The impetus for this study was an applied resource management need to clarify the identity of three western North American species of *Marsilea* in Florida (Jacono and Johnson, 2006). *Marsilea vestita* Hook. & Grev. and *M. macropoda* Engelm. ex A. Braun have been regarded as introduced to eastern
North America based on their disjunct and widely scattered populations at ruderal sites in Gulf coastal Alabama and Florida. A third species, centered on three central Florida counties, was tentatively identified as *M. aff. oligospora* Goodd. (Jacono and Johnson, 2006) based on sporocarp morphology; however, *Marsilea oligospora* is a semi-aquatic North American species otherwise endemic to the northern fringe of the Great Basin. Variation was noted between the Florida and the Great Basin material and it was difficult for the authors to speculate how a geographically restricted plant with no known economic value might have become established in central Florida over 100 years ago. The great difference in climate between northwestern U.S. and Florida added to our suspicion that these were two different taxa. These Florida *M. aff. oligospora* were first collected in the early 1890s near Eustis, Florida, and their determination has vacillated from *M. vestita*, an introduction from the western U.S. (Ward and Hall, 1976) to *M. ancyplopoda* A.Braun, a rare and potentially extinct native species (Jacono and Johnson, 2006).

Here we use DNA sequences of four plastid regions (rbcL, rps4, the rps4-trnS spacer, and the trnL-F spacer) to expand upon the recent molecular phylogeny of *Marsilea* (Nagalingum et al., 2007), using a greater sampling of North American specimens. Our first objective was to determine the status of the Florida plants assigned to *M. aff. oligospora*. We surveyed all known populations of *Marsilea* within Florida and compared them to all U.S., Mexican, and Caribbean species, as well as *Marsilea* species common in the aquatic plant trade that are established in the southeastern U.S. These data will provide a baseline for evaluating *M. aff. oligospora* in Florida and for distinguishing future introductions of *Marsilea*. Our second objective is to assess species monophyly using multiple accessions of each species, particularly for the North American specimens assigned to *Marsilea* sect. *Nodorhizae*.

Materials and Methods

Thirty-three samples were included from Nagalingum et al. (2007), and are distinguished by the GenBank prefix DQ; the remainder were generated in this study (Table 1). Because Florida collections of *M. oligospora* were hypothesized to be introductions from the western U.S. (Jacono and Johnson, 2006), we included as many specimens as possible from western states. Species not present in the Nagalingum et al. (2007) study include *M. coromandelina* Willd., *M. costulifera* D.L.Jones, *M. crenulata* Desv., *M. deflexa* A.Braun, *M. exarata* A.Braun, *M. fournieri* C.Chr., *M. hirsuta* R.Br., *M. mexicana* A.Braun, *M. mucronata* A.Braun, *M. scalaripes* D.M. Johnson, *M. tenuifolia* Engelm. ex Kunze, and *M. uncinata* A.Braun.

Samples were taken from herbarium specimens. Leaf samples (ca. 25 mm²) were ground using a tissue mill and extracted using a modified version of the 2× CTAB procedure of Doyle and Doyle (1987) with exclusion of beta-mercaptoethanol and inclusion of 5 units of proteinase K. Primers for *rbcL* were designed to allow amplification and sequencing in two overlapping
<table>
<thead>
<tr>
<th>DNA sample number</th>
<th>Taxon</th>
<th>rbcL</th>
<th>trnL-F</th>
<th>rps4</th>
<th>Herbarium of deposition</th>
<th>Voucher</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>005</td>
<td>Marsilea ancypodona A. Braun</td>
<td>FJ533947</td>
<td>FJ533854</td>
<td>FJ534040</td>
<td>FLAS E. Lott 3321</td>
<td></td>
<td>Mexico: Jalisco</td>
</tr>
<tr>
<td>006</td>
<td>Marsilea hirsuta R. Br.</td>
<td>FJ533948</td>
<td>FJ533855</td>
<td>FJ534041</td>
<td>FLAS Beckner 2619</td>
<td></td>
<td>USA: FL: Pinellas</td>
</tr>
<tr>
<td>007</td>
<td>Marsilea macropora Engelm. ex A. Braun</td>
<td>FJ533956</td>
<td>FJ533864</td>
<td>na</td>
<td>FLAS Ward 7623</td>
<td></td>
<td>USA: TX: San Patricio</td>
</tr>
<tr>
<td>008</td>
<td>Marsilea hirsuta R. Br.</td>
<td>FJ533953</td>
<td>FJ533861</td>
<td>FJ534046</td>
<td>FLAS Jacono 257</td>
<td></td>
<td>USA: FL: Hillsborough</td>
</tr>
<tr>
<td>009</td>
<td>Marsilea hirsuta R. Br.</td>
<td>FJ533954</td>
<td>FJ533862</td>
<td>FJ534047</td>
<td>FLAS Jacono 235</td>
<td></td>
<td>USA: FL: Pinellas</td>
</tr>
<tr>
<td>010</td>
<td>Marsilea macropora Engelm. ex A. Braun</td>
<td>FJ533957</td>
<td>FJ533865</td>
<td>FJ534049</td>
<td>FLAS Burkhalter 8846</td>
<td></td>
<td>USA: FL: Mobile</td>
</tr>
<tr>
<td>011</td>
<td>Marsilea macropora Engelm. ex A. Braun</td>
<td>FJ533958</td>
<td>FJ533866</td>
<td>FJ534050</td>
<td>FLAS Burkhalter 5672</td>
<td></td>
<td>USA: FL: Mobile</td>
</tr>
<tr>
<td>012</td>
<td>Marsilea macropora Engelm. ex A. Braun</td>
<td>FJ533959</td>
<td>FJ533867</td>
<td>FJ534051</td>
<td>FLAS McAlpin s.n.</td>
<td></td>
<td>USA: FL: Sarasota</td>
</tr>
<tr>
<td>013</td>
<td>Marsilea ancypodona A. Braun</td>
<td>HQ631073</td>
<td>HQ631266</td>
<td>HQ631171</td>
<td>FLAS E. Lott 3321</td>
<td></td>
<td>Mexico: Jalisco</td>
</tr>
<tr>
<td>014</td>
<td>Marsilea minuta L.</td>
<td>FJ533965</td>
<td>FJ533873</td>
<td>FJ534057</td>
<td>FLAS J. Allison 8001</td>
<td></td>
<td>USA: GA: Cobb</td>
</tr>
<tr>
<td>015</td>
<td>Marsilea minuta L.</td>
<td>FJ533966</td>
<td>FJ533874</td>
<td>FJ534058</td>
<td>FLAS J. Germann s.n.</td>
<td></td>
<td>USA: GA: McDuffie</td>
</tr>
<tr>
<td>016</td>
<td>Marsilea minuta L.</td>
<td>FJ533967</td>
<td>FJ533875</td>
<td>FJ534059</td>
<td>FLAS Jacono 394</td>
<td></td>
<td>USA: FL: Escambia</td>
</tr>
<tr>
<td>017</td>
<td>Marsilea minuta L.</td>
<td>FJ533968</td>
<td>FJ533876</td>
<td>FJ534060</td>
<td>FLAS Burkhalter 13304</td>
<td></td>
<td>USA: FL: Escambia</td>
</tr>
<tr>
<td>018</td>
<td>Marsilea minuta L.</td>
<td>FJ533969</td>
<td>FJ533877</td>
<td>FJ534061</td>
<td>FLAS Jacono 498</td>
<td></td>
<td>USA: FL: St. Lucie</td>
</tr>
<tr>
<td>020</td>
<td>Marsilea mutica Mett.</td>
<td>HQ631074</td>
<td>HQ631267</td>
<td>FJ534075</td>
<td>FLAS Jacono 503</td>
<td></td>
<td>USA: OK: Hughes</td>
</tr>
<tr>
<td>021</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533903</td>
<td>FJ533891</td>
<td>FJ534076</td>
<td>FLAS Jacono 362</td>
<td></td>
<td>USA: GA: Dekalb</td>
</tr>
<tr>
<td>022</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533984</td>
<td>FJ533892</td>
<td>FJ534077</td>
<td>FLAS Cooper s.n.</td>
<td></td>
<td>USA: GA: Fulton</td>
</tr>
<tr>
<td>023</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533985</td>
<td>FJ533893</td>
<td>FJ534078</td>
<td>FLAS Jacono 361</td>
<td></td>
<td>USA: GA: Spalding</td>
</tr>
<tr>
<td>024</td>
<td>Marsilea mutica Mett.</td>
<td>HQ631075</td>
<td>HQ631268</td>
<td>HQ631172</td>
<td>FLAS Kirk s.n.</td>
<td></td>
<td>USA: MS: Madison</td>
</tr>
<tr>
<td>025</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533986</td>
<td>FJ533894</td>
<td>FJ534079</td>
<td>FLAS Davis 1208</td>
<td></td>
<td>USA: FL: Alachua</td>
</tr>
<tr>
<td>026</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533987</td>
<td>FJ533895</td>
<td>FJ534080</td>
<td>FLAS Rodgers s.n.</td>
<td></td>
<td>USA: FL: Hillsborough</td>
</tr>
<tr>
<td>027</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533988</td>
<td>FJ533896</td>
<td>FJ534081</td>
<td>FLAS Greene s.n.</td>
<td></td>
<td>USA: AL: Marion</td>
</tr>
<tr>
<td>028</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533989</td>
<td>FJ533897</td>
<td>FJ534082</td>
<td>FLAS Jacono 502</td>
<td></td>
<td>USA: AL: Marion</td>
</tr>
<tr>
<td>030</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533993</td>
<td>FJ533901</td>
<td>FJ534086</td>
<td>FLAS Jacono 508</td>
<td></td>
<td>USA: FL: Lake</td>
</tr>
<tr>
<td>031</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533994</td>
<td>FJ533902</td>
<td>FJ534087</td>
<td>FLAS Jacono 510</td>
<td></td>
<td>USA: FL: Lake</td>
</tr>
<tr>
<td>032</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533995</td>
<td>FJ533903</td>
<td>FJ534088</td>
<td>FLAS Jacono 511</td>
<td></td>
<td>USA: FL: Lake</td>
</tr>
<tr>
<td>033</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533996</td>
<td>FJ533904</td>
<td>FJ534089</td>
<td>FLAS Jacono 571</td>
<td></td>
<td>USA: FL: Lake</td>
</tr>
<tr>
<td>034</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533997</td>
<td>FJ533905</td>
<td>FJ534090</td>
<td>FLAS Jacono 572</td>
<td></td>
<td>USA: FL: Lake</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>-------------------------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>035</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>FJ533998</td>
<td>FJ533906</td>
<td>FJ534092</td>
<td>FLAS Brinson s.n.</td>
<td>USA: FL: Seminole</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>HQ631076</td>
<td>HQ631269</td>
<td>FJ534092</td>
<td>FLAS Jacono 177</td>
<td>USA: FL: Seminole</td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Marsilea aff. oligospora Goodd.</td>
<td>HQ631077</td>
<td>FJ533907</td>
<td>FJ534093</td>
<td>FLAS Meisenburg s.n.</td>
<td>USA: FL: Volusia</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534005</td>
<td>FJ533913</td>
<td>FJ534098</td>
<td>FLAS Raymond & Painter 81</td>
<td>USA: LA: Caldwell</td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534028</td>
<td>FJ533935</td>
<td>FJ534122</td>
<td>FLAS Thomas 114,754</td>
<td>USA: LA: Caldwell</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534007</td>
<td>FJ533915</td>
<td>FJ534100</td>
<td>FLAS Brodie s.n.</td>
<td>USA: FL: Collier</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534008</td>
<td>FJ533916</td>
<td>FJ534101</td>
<td>FLAS Jacono 619</td>
<td>USA: FL: Collier</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534009</td>
<td>FJ533917</td>
<td>FJ534102</td>
<td>FLAS Anderson 7356</td>
<td>USA: FL: Franklin</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534010</td>
<td>FJ533918</td>
<td>FJ534103</td>
<td>FLAS Jacono 183</td>
<td>USA: FL: Franklin</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534011</td>
<td>FJ533919</td>
<td>FJ534104</td>
<td>FLAS Jacono 504</td>
<td>USA: FL: Franklin</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631078</td>
<td>HQ631270</td>
<td>FJ534105</td>
<td>FLAS Hall 414</td>
<td>USA: FL: Hillsborough</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631079</td>
<td>FJ533920</td>
<td>FJ534106</td>
<td>TENN D. Thomas & E. Sundell 167474</td>
<td>USA: AR: Lincoln</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534013</td>
<td>FJ533921</td>
<td>FJ534107</td>
<td>TENN D. Thomas 114172</td>
<td>USA: LA: Caldwell</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534014</td>
<td>FJ533922</td>
<td>FJ534108</td>
<td>TENN D. Thomas & C. M. Allen</td>
<td>USA: LA: St. James</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534015</td>
<td>FJ533923</td>
<td>FJ534109</td>
<td>TENN J. Taylor 29759</td>
<td>USA: OK: Johnston</td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>FJ533960</td>
<td>FJ533868</td>
<td>na</td>
<td>TENN G. Landry & S. Holder 7832</td>
<td>USA: LA: Orleans</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>Marsilea minuta L.</td>
<td>FJ533970</td>
<td>FJ533878</td>
<td>HQ631173</td>
<td>TENN J.T. Beck 3867</td>
<td>USA: TN: Hamilton</td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>FJ533961</td>
<td>FJ533869</td>
<td>FJ534052</td>
<td>USF K. Bradley 1858</td>
<td>USA: FL: Collier</td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>FJ533962</td>
<td>FJ533870</td>
<td>FJ534053</td>
<td>USF B. McAlpin sn</td>
<td>USA: FL: Sarasota</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>FJ533963</td>
<td>FJ533871</td>
<td>FJ534054</td>
<td>USF B. McAlpin sn</td>
<td>USA: FL: Collier</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534016</td>
<td>HQ631271</td>
<td>HQ631174</td>
<td>USF A. Gholson et al. 11253</td>
<td>USA: FL: Franklin</td>
<td></td>
</tr>
<tr>
<td>057</td>
<td>Marsilea minuta L.</td>
<td>FJ533971</td>
<td>FJ533879</td>
<td>HQ631175</td>
<td>USF J. Burkhalter 13304</td>
<td>USA: FL: Escambia</td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>Marsilea minuta L.</td>
<td>FJ533972</td>
<td>FJ533880</td>
<td>FJ534063</td>
<td>USF Jacono 667</td>
<td>USA: FL: Brevard</td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631080</td>
<td>HQ631272</td>
<td>FJ534048</td>
<td>USF J. Beckner 2619</td>
<td>USA: FL: Pinellas</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>Marsilea hirsuta R. Br.</td>
<td>FJ533955</td>
<td>FJ533863</td>
<td>HQ631176</td>
<td>USF R. Wunderlin et al. 10365</td>
<td>USA: FL: Pinellas</td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533990</td>
<td>FJ533898</td>
<td>FJ534083</td>
<td>ASU D. Damrel 2429</td>
<td>USA: AZ: Maricopa</td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>Marsilea hirsuta R. Br.</td>
<td>FJ533991</td>
<td>FJ533899</td>
<td>FJ534084</td>
<td>ASU L. Makings 2090</td>
<td>USA: AZ: Maricopa</td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534017</td>
<td>FJ533924</td>
<td>FJ534110</td>
<td>ASU R. Felger 85-484</td>
<td>Mexico: Sonora</td>
<td></td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>067</td>
<td>Marsilea deflexa A. Braun</td>
<td>FJ534018</td>
<td>FJ533925</td>
<td>FJ534111</td>
<td>ASU</td>
<td>Steinman et al. 93-373</td>
<td>Mexico; Sonora</td>
</tr>
<tr>
<td>068</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534019</td>
<td>FJ533926</td>
<td>FJ534112</td>
<td>ASU</td>
<td>J. Rebman & H. Lopez 2608</td>
<td>Mexico: Baja California</td>
</tr>
<tr>
<td>070</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533976</td>
<td>FJ533884</td>
<td>FJ534067</td>
<td>ASU</td>
<td>G. Ferguson 118</td>
<td>Mexico: Chihuahua</td>
</tr>
<tr>
<td>071</td>
<td>Marsilea mexicana A. Braun</td>
<td>HQ631081</td>
<td>HQ631273</td>
<td>FJ534056</td>
<td>ASU</td>
<td>J. Hernandez s.n.</td>
<td>Mexico: Zacatecas</td>
</tr>
<tr>
<td>072</td>
<td>Marsilea fournieri C. Chr.</td>
<td>FJ533952</td>
<td>FJ533860</td>
<td>FJ534045</td>
<td>ASU</td>
<td>J. Rebman & C. Davis 1684</td>
<td>Mexico: Baja</td>
</tr>
<tr>
<td>073</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534021</td>
<td>FJ533928</td>
<td>FJ534114</td>
<td>ASU</td>
<td>E. Wise 1716</td>
<td>USA: CA; San</td>
</tr>
<tr>
<td>074</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534022</td>
<td>FJ533929</td>
<td>FJ534115</td>
<td>ASU</td>
<td>R. Worthington 21894</td>
<td>USA: NM; Luna</td>
</tr>
<tr>
<td>075</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534023</td>
<td>FJ533930</td>
<td>FJ534116</td>
<td>ASU</td>
<td>D. Kell 18024</td>
<td>USA: CA; San</td>
</tr>
<tr>
<td>076</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534024</td>
<td>FJ533931</td>
<td>FJ534117</td>
<td>ASU</td>
<td>L. McGill 7203</td>
<td>USA: AZ; Cochise</td>
</tr>
<tr>
<td>077</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>HQ631082</td>
<td>HQ631274</td>
<td>FJ534118</td>
<td>ASU</td>
<td>W. T. Johnson s.n.</td>
<td>USA: AZ; Cochise</td>
</tr>
<tr>
<td>078</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534025</td>
<td>FJ533932</td>
<td>FJ534119</td>
<td>ASU</td>
<td>G. Mars-Smith 1211</td>
<td>USA: AZ; Cochise</td>
</tr>
<tr>
<td>079</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ534026</td>
<td>FJ533933</td>
<td>FJ534120</td>
<td>ASU</td>
<td>D. Damrel 627-A</td>
<td>USA: AZ; Gila</td>
</tr>
<tr>
<td>080</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ534027</td>
<td>FJ533934</td>
<td>FJ534121</td>
<td>ASU</td>
<td>T. Wright & M. Baker 93-102</td>
<td>USA: AZ; Yaupai</td>
</tr>
<tr>
<td>081</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>HQ631083</td>
<td>HQ631275</td>
<td>FJ534068</td>
<td>ASU</td>
<td>J. Collins s.n.</td>
<td>USA: AZ; Cochise</td>
</tr>
<tr>
<td>082</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533977</td>
<td>FJ533885</td>
<td>FJ534069</td>
<td>ASU</td>
<td>E. Lehto 24541</td>
<td>USA: AZ; Cochino</td>
</tr>
<tr>
<td>083</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533978</td>
<td>FJ533886</td>
<td>FJ534070</td>
<td>ASU</td>
<td>M. Baker 8595</td>
<td>USA: AZ; Cochino</td>
</tr>
<tr>
<td>084</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533979</td>
<td>FJ533887</td>
<td>FJ534071</td>
<td>ASU</td>
<td>L. McGill 6860</td>
<td>USA: AZ; Coconino</td>
</tr>
<tr>
<td>085</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533980</td>
<td>FJ533888</td>
<td>FJ534072</td>
<td>ASU</td>
<td>M. Windham 0114D</td>
<td>USA: AZ; Coconino</td>
</tr>
<tr>
<td>086</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533981</td>
<td>FJ533889</td>
<td>FJ534073</td>
<td>ASU</td>
<td>D.J. Pinkava et al. s.n.</td>
<td>USA: AZ; Coconino</td>
</tr>
<tr>
<td>087</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534006</td>
<td>FJ533914</td>
<td>FJ534099</td>
<td>VPI</td>
<td>R.D. Thomas 114754</td>
<td>USA: LA; Caldwell</td>
</tr>
<tr>
<td>088</td>
<td>Marsilea mutica Mett.</td>
<td>FJ533992</td>
<td>FJ533900</td>
<td>FJ534085</td>
<td>VPI</td>
<td>M. Robinette sn</td>
<td>USA: VA; Patrick</td>
</tr>
<tr>
<td>089</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534029</td>
<td>FJ533936</td>
<td>FJ534123</td>
<td>ID</td>
<td>C.R. Bjork 6868</td>
<td>USA: ID; Nez Perce</td>
</tr>
<tr>
<td>090</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534030</td>
<td>FJ533937</td>
<td>FJ534124</td>
<td>ID</td>
<td>C.R. Bjork s.n.</td>
<td>USA: ID; Nez Perce</td>
</tr>
<tr>
<td>091</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534031</td>
<td>FJ533938</td>
<td>FJ534125</td>
<td>ID</td>
<td>A. Tiehm 15267</td>
<td>USA: NV; Washoe</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>092</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534032</td>
<td>FJ533939</td>
<td>FJ534126</td>
<td>ID</td>
<td>C.R. Bjork 2404</td>
<td>USA: OR: Malheur</td>
</tr>
<tr>
<td>093</td>
<td>Marsilea oligospora Goodd.</td>
<td>FJ534000</td>
<td>FJ533908</td>
<td>FJ534094</td>
<td>ID</td>
<td>C.R. Bjork 3916</td>
<td>USA: ID: Owyhee</td>
</tr>
<tr>
<td>094</td>
<td>Marsilea oligospora Goodd.</td>
<td>FJ534001</td>
<td>FJ533909</td>
<td>FJ534095</td>
<td>ID</td>
<td>F.D. Johnson sn</td>
<td>USA: ID: Idaho</td>
</tr>
<tr>
<td>095</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>FJ534002</td>
<td>FJ533910</td>
<td>FJ534096</td>
<td>MO</td>
<td>S.R. Hall & L. Phillipie 28868</td>
<td>Dominica: St. Andrews</td>
</tr>
<tr>
<td>096</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534033</td>
<td>FJ533940</td>
<td>FJ534127</td>
<td>UTC</td>
<td>N. & P. Holmgren</td>
<td>USA: NV: Elko</td>
</tr>
<tr>
<td>097</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534034</td>
<td>FJ533941</td>
<td>FJ534128</td>
<td>UTC</td>
<td>A. Tiehm 14569</td>
<td>USA: NV: Elko</td>
</tr>
<tr>
<td>098</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534035</td>
<td>FJ533942</td>
<td>FJ534129</td>
<td>UTC</td>
<td>R.J. Shaw 3708</td>
<td>USA: UT: Millard</td>
</tr>
<tr>
<td>099</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534036</td>
<td>FJ533943</td>
<td>FJ534130</td>
<td>UTC</td>
<td>Weber & Wittmann 18558</td>
<td>USA: CO: Baca</td>
</tr>
<tr>
<td>100</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534037</td>
<td>FJ533944</td>
<td>FJ534131</td>
<td>UTC</td>
<td>R.J. & M. Shaw 4986</td>
<td>USA: MT: Lake</td>
</tr>
<tr>
<td>101</td>
<td>Marsilea minuta L.</td>
<td>FJ533973</td>
<td>FJ533881</td>
<td>FJ534064</td>
<td>MISS</td>
<td>A.R. Diamond 14269</td>
<td>USA: AL: Pike</td>
</tr>
<tr>
<td>102</td>
<td>Marsilea minuta L.</td>
<td>FJ533974</td>
<td>FJ533882</td>
<td>FJ534065</td>
<td>MICH</td>
<td>D.M. Johnson 800</td>
<td>Trinidad: Nariva Cocal</td>
</tr>
<tr>
<td>103</td>
<td>Marsilea deflexa A. Braun</td>
<td>FJ533951</td>
<td>FJ533859</td>
<td>FJ534044</td>
<td>MICH</td>
<td>D.M. Johnson 794</td>
<td>Venezuela: Guaro</td>
</tr>
<tr>
<td>104</td>
<td>Marsilea ancylopoa A. Braun</td>
<td>FJ533949</td>
<td>FJ533856</td>
<td>FJ534042</td>
<td>MICH</td>
<td>D.M. Johnson 773</td>
<td>Argentina: Corrientes</td>
</tr>
<tr>
<td>105</td>
<td>Marsilea ancylopoa A. Braun</td>
<td>HQ631084</td>
<td>FJ53857</td>
<td>HQ631177</td>
<td>MICH</td>
<td>E. Lott & A. Sanders 3987</td>
<td>Mexico: Jalisco: Queamar</td>
</tr>
<tr>
<td>107</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>FJ534003</td>
<td>FJ533911</td>
<td>HQ631178</td>
<td>MICH</td>
<td>W. Wagner</td>
<td>Puerto Rico: Loiza</td>
</tr>
<tr>
<td>108</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>FJ534004</td>
<td>FJ533912</td>
<td>FJ534097</td>
<td>MICH</td>
<td>D.M. Johnson 793</td>
<td>Venezuela: Apure</td>
</tr>
<tr>
<td>109</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>FJ533982</td>
<td>FJ533890</td>
<td>FJ534074</td>
<td>MICH</td>
<td>N.Murray & D.M. Johnson 1404</td>
<td>Mexico: Chionas</td>
</tr>
<tr>
<td>110</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>FJ534038</td>
<td>FJ533945</td>
<td>FJ534132</td>
<td>MICH</td>
<td>B. Ertter et al. 8131</td>
<td>USA: CA: Contra Costa</td>
</tr>
<tr>
<td>111</td>
<td>Marsilea macropoda Englom. ex A. Braun</td>
<td>FJ533964</td>
<td>FJ533872</td>
<td>FJ534055</td>
<td>MICH</td>
<td>D.M. Johnson 721</td>
<td>USA: TX: Aransas</td>
</tr>
<tr>
<td>112</td>
<td>Marsilea coromandelina Willd.</td>
<td>FJ533950</td>
<td>FJ533858</td>
<td>FJ534043</td>
<td>MICH</td>
<td>M. Dyer 172</td>
<td>Nigeria: Kano: Acha Laia</td>
</tr>
<tr>
<td>116</td>
<td>Marsilea mutica Mett.</td>
<td>HQ631085</td>
<td>FJ533946</td>
<td>FJ534133</td>
<td>VPI</td>
<td>R. Page s.n.</td>
<td>USA: VA: Hanover</td>
</tr>
<tr>
<td>119</td>
<td>Marsilea nashii Underw.</td>
<td>HQ631086</td>
<td>HQ631276</td>
<td>HQ631179</td>
<td>FLAS</td>
<td>R.J. Abbott 8678</td>
<td>USA: FL: Dade</td>
</tr>
<tr>
<td>121</td>
<td>Marsilea quadrifolia L.</td>
<td>HQ631087</td>
<td>HQ631277</td>
<td>HQ631180</td>
<td>FLAS</td>
<td>C. Jacוני 622</td>
<td>USA: PA: Bradford</td>
</tr>
<tr>
<td>122</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>HQ631088</td>
<td>HQ631278</td>
<td>HQ631181</td>
<td>FLAS</td>
<td>R. Dressler 6004</td>
<td>Panama: Panama</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------</td>
<td>------------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>124</td>
<td>Marsilea costulifera D.L. Jones</td>
<td>HQ631089</td>
<td>HQ631279</td>
<td>HQ631182</td>
<td>FLAS</td>
<td>M. Whitten 3756</td>
<td>Australia: NSW</td>
</tr>
<tr>
<td>125</td>
<td>Marsilea villosa Kaulf.</td>
<td>HQ631090</td>
<td>HQ631280</td>
<td>HQ631183</td>
<td>BISH</td>
<td>Marian Chau 602</td>
<td>USA: HI: Oahu</td>
</tr>
<tr>
<td>127</td>
<td>Marsilea villosa Kaulf.</td>
<td>HQ631091</td>
<td>HQ631281</td>
<td>HQ631184</td>
<td>BISH</td>
<td>Marian Chau 029</td>
<td>USA: HI: Oahu</td>
</tr>
<tr>
<td>128</td>
<td>Marsilea villosa Kaulf.</td>
<td>HQ631092</td>
<td>HQ631282</td>
<td>HQ631185</td>
<td>BISH</td>
<td>Marian Chau 022</td>
<td>USA: HI: Moloka'i</td>
</tr>
<tr>
<td>129</td>
<td>Marsilea villosa Kaulf.</td>
<td>HQ631093</td>
<td>HQ631283</td>
<td>HQ631186</td>
<td>BISH</td>
<td>Marian Chau 015</td>
<td>USA: HI: Moloka'i</td>
</tr>
<tr>
<td>130</td>
<td>Marsilea angustifolia R. Br.</td>
<td>HQ631094</td>
<td>HQ631284</td>
<td>HQ631187</td>
<td>MEL</td>
<td>I.D. Cowie 9345</td>
<td>Australia: NT</td>
</tr>
<tr>
<td>131</td>
<td>Marsilea crenata C. Presl</td>
<td>HQ631095</td>
<td>HQ631285</td>
<td>HQ631188</td>
<td>MEL</td>
<td>G. Wightman 1458</td>
<td>Australia: NT</td>
</tr>
<tr>
<td>132</td>
<td>Marsilea costulifera D.L. Jones</td>
<td>HQ631096</td>
<td>HQ631286</td>
<td>HQ631189</td>
<td>MEL</td>
<td>I. Tankard s.n.</td>
<td>Australia: UC</td>
</tr>
<tr>
<td>133</td>
<td>Marsilea exarata A. Braun</td>
<td>HQ631097</td>
<td>HQ631287</td>
<td>HQ631190</td>
<td>MEL</td>
<td>P.K. Latz 11823</td>
<td>Australia: NT</td>
</tr>
<tr>
<td>134</td>
<td>Marsilea exarata A. Braun</td>
<td>HQ631098</td>
<td>HQ631288</td>
<td>HQ631191</td>
<td>MEL</td>
<td>M.E. Trudgen 15576</td>
<td>Australia: WA</td>
</tr>
<tr>
<td>135</td>
<td>Marsilea exarata A. Braun</td>
<td>HQ631099</td>
<td>HQ631289</td>
<td>HQ631192</td>
<td>MEL</td>
<td>P.I. Forster 20421</td>
<td>Australia: QLD</td>
</tr>
<tr>
<td>136</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631100</td>
<td>HQ631290</td>
<td>HQ631193</td>
<td>MEL</td>
<td>K. Alcock s.n.</td>
<td>Australia: SA</td>
</tr>
<tr>
<td>137</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631101</td>
<td>HQ631291</td>
<td>HQ631194</td>
<td>MEL</td>
<td>P.I. Forster 20681</td>
<td>Australia: QLD</td>
</tr>
<tr>
<td>138</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631102</td>
<td>HQ631292</td>
<td>HQ631195</td>
<td>MEL</td>
<td>I.D. Cowie 9590</td>
<td>Australia: NT</td>
</tr>
<tr>
<td>139</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>HQ631103</td>
<td>HQ631293</td>
<td>HQ631196</td>
<td>CAS</td>
<td>M.L. Arregui 589</td>
<td>Mexico</td>
</tr>
<tr>
<td>141</td>
<td>Marsilea minuta L.</td>
<td>HQ631104</td>
<td>HQ631294</td>
<td>HQ631197</td>
<td>CAS</td>
<td>D.M. Johnson 800</td>
<td>Trinidad: Nariva Cocal</td>
</tr>
<tr>
<td>144</td>
<td>Marsilea ancylopoda A. Braun</td>
<td>HQ631105</td>
<td>HQ631295</td>
<td>HQ631198</td>
<td>CAS</td>
<td>E.J. Lott 3987 with</td>
<td>Mexico: Jalisco: Mpio</td>
</tr>
<tr>
<td>145</td>
<td>Marsilea mucronata A. Braun</td>
<td>HQ631106</td>
<td>HQ631296</td>
<td>HQ631199</td>
<td>CAS</td>
<td>B. Ertter 3894 with J. Strachan</td>
<td>USA: CA: Plumas</td>
</tr>
<tr>
<td>146</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631107</td>
<td>HQ631297</td>
<td>HQ631200</td>
<td>CAS</td>
<td>A. Day 83-59</td>
<td>USA: CA: Merced</td>
</tr>
<tr>
<td>147</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631108</td>
<td>HQ631298</td>
<td>HQ631201</td>
<td>CAS</td>
<td>L. Ahart 4404</td>
<td>USA: CA: Sutter</td>
</tr>
<tr>
<td>148</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631109</td>
<td>HQ631299</td>
<td>HQ631202</td>
<td>CAS</td>
<td>A. Tiehm 11938</td>
<td>USA: NV: Elko</td>
</tr>
<tr>
<td>149</td>
<td>Marsilea quadrifolia L.</td>
<td>na</td>
<td>HQ631300</td>
<td>HQ631203</td>
<td>CAS</td>
<td>B. Bartholomew et al.</td>
<td>China: Guizhou Exped. 2380</td>
</tr>
<tr>
<td>150</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>na</td>
<td>HQ631301</td>
<td>HQ631204</td>
<td>CAS</td>
<td>W.H. Wagner 82018</td>
<td>Puerto Rico: Loiza</td>
</tr>
<tr>
<td>151</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631110</td>
<td>HQ631302</td>
<td>HQ631205</td>
<td>CAS</td>
<td>J.T. Howell 36949</td>
<td>USA: CA: Plumas</td>
</tr>
<tr>
<td>152</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631111</td>
<td>HQ631303</td>
<td>HQ631206</td>
<td>CAS</td>
<td>A. Tiehm 13199 with G. Schoolcraft</td>
<td>USA: NV: Washoe</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>154</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631112</td>
<td>HQ631304</td>
<td>HQ631207</td>
<td>JEPS</td>
<td>V.H. Oswald & L. Ahart 9591</td>
<td>USA: CA: Modoc</td>
</tr>
<tr>
<td>155</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631113</td>
<td>HQ631305</td>
<td>HQ631208</td>
<td>JEPS</td>
<td>V.H. Oswald & L. Ahart 9597</td>
<td>USA: CA: Modoc</td>
</tr>
<tr>
<td>156</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631114</td>
<td>HQ631306</td>
<td>HQ631209</td>
<td>JEPS</td>
<td>L. Ahart 13088</td>
<td>USA: CA: Butte</td>
</tr>
<tr>
<td>157</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631115</td>
<td>HQ631307</td>
<td>HQ631210</td>
<td>JEPS</td>
<td>L. Ahart 14483</td>
<td>USA: CA: Butte</td>
</tr>
<tr>
<td>158</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631116</td>
<td>HQ631308</td>
<td>HQ631211</td>
<td>JEPS</td>
<td>L. Ahart 14579</td>
<td>USA: CA: Yuba</td>
</tr>
<tr>
<td>159</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631117</td>
<td>HQ631309</td>
<td>HQ631212</td>
<td>JEPS</td>
<td>L. Ahart 9320</td>
<td>USA: CA: Plumas</td>
</tr>
<tr>
<td>160</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631118</td>
<td>HQ631310</td>
<td>HQ631213</td>
<td>UC</td>
<td>B. Erter 9696</td>
<td>USA: CA: Amador</td>
</tr>
<tr>
<td>161</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631119</td>
<td>HQ631311</td>
<td>HQ631214</td>
<td>UC</td>
<td>V.H. Oswald & L. Ahart 4837</td>
<td>USA: CA: Butte</td>
</tr>
<tr>
<td>162</td>
<td>Marsilea oligospora Goodd.</td>
<td>HQ631120</td>
<td>HQ631312</td>
<td>HQ631215</td>
<td>UC</td>
<td>V.H. Oswald & L. Ahart 5126</td>
<td>USA: CA: Lassen</td>
</tr>
<tr>
<td>165</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631121</td>
<td>HQ631313</td>
<td>HQ631216</td>
<td>UC</td>
<td>R. B. Hayward et al. 56</td>
<td>Venezuela: Zulia</td>
</tr>
<tr>
<td>166</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631122</td>
<td>HQ631314</td>
<td>HQ631217</td>
<td>UC</td>
<td>R.G. Coveny et al. 12653</td>
<td>Australia: NSW</td>
</tr>
<tr>
<td>169</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631123</td>
<td>HQ631315</td>
<td>HQ631218</td>
<td>UC</td>
<td>D.M. Johnson 769</td>
<td>Argentina: Corrientes</td>
</tr>
<tr>
<td>170</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631124</td>
<td>HQ631316</td>
<td>HQ631219</td>
<td>UC</td>
<td>E.J. Lott 3987 with</td>
<td>Mexico: Jalisco</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.C. Sanders</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631125</td>
<td>HQ631317</td>
<td>HQ631220</td>
<td>UC</td>
<td>A.C. Sanders et al. 13527</td>
<td>Mexico: Sonora</td>
</tr>
<tr>
<td>172</td>
<td>Marsilea quadrifolia L.</td>
<td>HQ631126</td>
<td>HQ631318</td>
<td>HQ631221</td>
<td>UC</td>
<td>B. Dickore 13374</td>
<td>Pakistan</td>
</tr>
<tr>
<td>173</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631127</td>
<td>HQ631319</td>
<td>HQ631222</td>
<td>UC</td>
<td>A. Tiehm 12601</td>
<td>USA: NV: Washoe</td>
</tr>
<tr>
<td>174</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631128</td>
<td>HQ631320</td>
<td>HQ631223</td>
<td>UC</td>
<td>M. Lehnert 745</td>
<td>Bolivia: Tarifa</td>
</tr>
<tr>
<td>175</td>
<td>Marsilea deflexa A. Braun</td>
<td>HQ631129</td>
<td>HQ631321</td>
<td>HQ631224</td>
<td>UC</td>
<td>R. Rueda & R. Dolmus 1221</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>176</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631130</td>
<td>HQ631322</td>
<td>HQ631225</td>
<td>CICY</td>
<td>J.L. Tapia et al. 1597</td>
<td>Mexico: Yucatan</td>
</tr>
<tr>
<td>177</td>
<td>Marsilea ancylopa A. Braun</td>
<td>HQ631131</td>
<td>HQ631323</td>
<td>HQ631226</td>
<td>F (US)</td>
<td>S. Llatas & Quiroz 2401</td>
<td>Peru: San Nicolas</td>
</tr>
<tr>
<td>179</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631132</td>
<td>HQ631324</td>
<td>HQ631227</td>
<td>US</td>
<td>J. Pruski 3743</td>
<td>USA: LA: Orleans</td>
</tr>
<tr>
<td>186</td>
<td>Marsilea exarata A. Braun</td>
<td>HQ631134</td>
<td>HQ631326</td>
<td>HQ631229</td>
<td>US</td>
<td>A. Faden 1/91</td>
<td>Australia: QLD</td>
</tr>
<tr>
<td>187</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>HQ631135</td>
<td>HQ631327</td>
<td>HQ631230</td>
<td>QCA</td>
<td>Terneus & Gonzalez 347</td>
<td>Ecuador: Imbabura:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lago San Pablo</td>
</tr>
<tr>
<td>188</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>HQ631136</td>
<td>HQ631328</td>
<td>HQ631231</td>
<td>GH</td>
<td>R. Moran 28429</td>
<td>Mexico: Baja California</td>
</tr>
<tr>
<td>189</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631137</td>
<td>HQ631329</td>
<td>HQ631232</td>
<td>GH</td>
<td>P.H. Raven 16601</td>
<td>USA: CA: Stanislaus</td>
</tr>
<tr>
<td>190</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631138</td>
<td>HQ631330</td>
<td>HQ631233</td>
<td>GH</td>
<td>G. Carnevali et al. 6740</td>
<td>Mexico: Yucatan</td>
</tr>
<tr>
<td>Sample number</td>
<td>Taxon</td>
<td>rbCL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>192</td>
<td>Marsilea ancylopoda A. Braun</td>
<td>HQ631139</td>
<td>HQ631331 na</td>
<td></td>
<td>GH</td>
<td>V. Solis Neffa 001</td>
<td>Argentina: Corrientes</td>
</tr>
<tr>
<td>194</td>
<td>Marsilea tenuifolia Engelm. ex Kunze</td>
<td>HQ631140</td>
<td>HQ631332</td>
<td>HQ631235</td>
<td>OWU</td>
<td>D.M. Johnson 2124</td>
<td>USA: TX: Mason</td>
</tr>
<tr>
<td>195</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631141</td>
<td>HQ631333</td>
<td>HQ631236</td>
<td>OWU</td>
<td>D.M. Johnson 2123</td>
<td>USA: LA: LaSalle</td>
</tr>
<tr>
<td>196</td>
<td>Marsilea ancylopoda A. Braun</td>
<td>HQ631142</td>
<td>HQ631334</td>
<td>HQ631237</td>
<td>NY</td>
<td>A. Miller & D.M. Johnson 1458</td>
<td>Mexico: Nayarit</td>
</tr>
<tr>
<td>197</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631143</td>
<td>HQ631335</td>
<td>HQ631238</td>
<td>NY</td>
<td>W.T. Barker 1836</td>
<td>USA: KS: Kiowa</td>
</tr>
<tr>
<td>199</td>
<td>Marsilea collina Good.</td>
<td>HQ631144</td>
<td>HQ631336</td>
<td>HQ631239</td>
<td>NY</td>
<td>D. Lytten 131</td>
<td>USA: OR: Malheur</td>
</tr>
<tr>
<td>200</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631145</td>
<td>HQ631337</td>
<td>HQ631240</td>
<td>NY</td>
<td>R. Thorne & S. Goodrich 3550</td>
<td>USA: UT: Uintah</td>
</tr>
<tr>
<td>201</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631146</td>
<td>HQ631338</td>
<td>HQ631241</td>
<td>NY</td>
<td>A. Tiehm 11766</td>
<td>USA: NV: Pershing</td>
</tr>
<tr>
<td>203</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>HQ631147</td>
<td>HQ631339</td>
<td>HQ631242</td>
<td>NY</td>
<td>N.H. & P.K. Holmgren 9585</td>
<td>USA: OR: Lake</td>
</tr>
<tr>
<td>204</td>
<td>Marsilea minuta L.</td>
<td>HQ631148</td>
<td>HQ631340</td>
<td>HQ631243</td>
<td>NY</td>
<td>M. Boudrie & S. Gonzalez 4191</td>
<td>French Guyana</td>
</tr>
<tr>
<td>205</td>
<td>Marsilea exarata A. Braun</td>
<td>HQ631149</td>
<td>HQ631341</td>
<td>HQ631244</td>
<td>NY</td>
<td>D.M. Johnson 798</td>
<td>Trinidad</td>
</tr>
<tr>
<td>207</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631150</td>
<td>HQ631342</td>
<td>HQ631245</td>
<td>NY</td>
<td>F.J. Badman 6949</td>
<td>Australia: SA</td>
</tr>
<tr>
<td>208</td>
<td>Marsilea hirsuta R. Br.</td>
<td>HQ631151</td>
<td>HQ631343</td>
<td>HQ631246</td>
<td>NY</td>
<td>C.R. Michell & D.S. Calliss 994</td>
<td>Australia: NT</td>
</tr>
<tr>
<td>211</td>
<td>Marsilea crenulata Desv.</td>
<td>HQ631152</td>
<td>HQ631344</td>
<td>HQ631247</td>
<td>NY</td>
<td>J.E. Madsen 6013</td>
<td>Burkina Faso: Oudalan</td>
</tr>
<tr>
<td>216</td>
<td>Marsilea crenulata Hook. & Grev.</td>
<td>HQ631153</td>
<td>HQ631345</td>
<td>HQ631248</td>
<td>NY</td>
<td>L. Ahart 2376</td>
<td>USA: CA: Butte</td>
</tr>
<tr>
<td>220</td>
<td>Marsilea crenulata Hook. & Grev.</td>
<td>HQ631155</td>
<td>HQ631347</td>
<td>HQ631250</td>
<td>NY</td>
<td>R. Moran 28429</td>
<td>Mexico: BC</td>
</tr>
<tr>
<td>222</td>
<td>Marsilea crenulata Hook. & Grev.</td>
<td>HQ631156</td>
<td>HQ631348</td>
<td>HQ631251</td>
<td>NY</td>
<td>Bisse et al. 32886</td>
<td>Cuba</td>
</tr>
<tr>
<td>224</td>
<td>Marsilea uncinata A. Braun</td>
<td>HQ631157</td>
<td>HQ631349</td>
<td>HQ631252</td>
<td>NY</td>
<td>S.W. Leonard et al. 8495</td>
<td>USA: FL: Franklin</td>
</tr>
<tr>
<td>225</td>
<td>Marsilea uncinata A. Braun</td>
<td>HQ631158</td>
<td>HQ631350</td>
<td>HQ631253</td>
<td>NY</td>
<td>A. Taye 4957</td>
<td>USA: UT: Puente</td>
</tr>
<tr>
<td>227</td>
<td>Marsilea mollis B.H. Rob. & Fernald</td>
<td>HQ631159</td>
<td>HQ631351</td>
<td>HQ631254</td>
<td>NY</td>
<td>R. McVaugh 16917</td>
<td>Mexico: Jalisco</td>
</tr>
<tr>
<td>230</td>
<td>Marsilea deflexa A. Braun</td>
<td>HQ631160</td>
<td>HQ631352</td>
<td>HQ631255</td>
<td>NY</td>
<td>J.T. Mickel 2856</td>
<td>Costa Rica: Guanacaste</td>
</tr>
<tr>
<td>231</td>
<td>Marsilea deflexa A. Braun</td>
<td>HQ631161</td>
<td>HQ631353</td>
<td>HQ631256</td>
<td>NY</td>
<td>R. McVaugh 19287</td>
<td>Mexico: Nayarit</td>
</tr>
<tr>
<td>233</td>
<td>Marsilea deflexa A. Braun</td>
<td>HQ631162</td>
<td>HQ631354</td>
<td>HQ631257</td>
<td>TX</td>
<td>W.R. Carr 25313</td>
<td>USA: TX: McMullen</td>
</tr>
<tr>
<td>234</td>
<td>Marsilea deflexa A. Braun</td>
<td>HQ631163</td>
<td>HQ631355</td>
<td>HQ631258</td>
<td>TX</td>
<td>L.L. Hansen 5163</td>
<td>USA: TX: Coryell</td>
</tr>
<tr>
<td>235</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>HQ631164</td>
<td>HQ631356</td>
<td>HQ631259</td>
<td>TX</td>
<td>W.R. Carr 24546</td>
<td>USA: TX: Goliad</td>
</tr>
<tr>
<td>239</td>
<td>Marsilea ephippiocarpa Alston</td>
<td>HQ631165</td>
<td>HQ631357</td>
<td>HQ631260</td>
<td>AA</td>
<td>PRE 99559</td>
<td>Namibia</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>240</td>
<td>Marsilea crenata C. Presl</td>
<td>HQ631166</td>
<td>HQ631358</td>
<td>HQ631261</td>
<td>FLAS</td>
<td>Whitten 3765</td>
<td>Thailand</td>
</tr>
<tr>
<td>241</td>
<td>Marsilea scalaripes D.M. Johnson</td>
<td>HQ631167</td>
<td>HQ631359</td>
<td>HQ631262</td>
<td>FLAS</td>
<td>Whitten 3766</td>
<td>Thailand</td>
</tr>
<tr>
<td>242</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631168</td>
<td>HQ631360</td>
<td>HQ631263</td>
<td>MEXU</td>
<td>R.S. Felger 85-588</td>
<td>Mexico: Sonora</td>
</tr>
<tr>
<td>243</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631169</td>
<td>HQ631361</td>
<td>HQ631264</td>
<td>MEXU</td>
<td>R.S. Felger 01-746</td>
<td>Mexico: Sonora</td>
</tr>
<tr>
<td>244</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>HQ631170</td>
<td>HQ631362</td>
<td>HQ631265</td>
<td>MEXU</td>
<td>R.S. Felger 85-1118</td>
<td>Mexico: Sonora</td>
</tr>
<tr>
<td>256</td>
<td>Marsilea aegyptica Willd.</td>
<td>DQ643291</td>
<td>DQ643359</td>
<td>DQ536323</td>
<td>BM</td>
<td>Smith 3623</td>
<td>Namibia</td>
</tr>
<tr>
<td>257</td>
<td>Marsilea ancylopoda A. Braun</td>
<td>DQ643292</td>
<td>DQ643360</td>
<td>DQ536324</td>
<td>F</td>
<td>Pryer et al. 963</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>258</td>
<td>Marsilea angustifolia R. Br.</td>
<td>DQ643293</td>
<td>DQ643361</td>
<td>DQ536325</td>
<td>UC</td>
<td>Hoshizaki 1250</td>
<td>Australia</td>
</tr>
<tr>
<td>259</td>
<td>Marsilea botryocarpa Ballard</td>
<td>DQ643294</td>
<td>DQ643362</td>
<td>DQ536326</td>
<td>UC</td>
<td>Faden s.n.</td>
<td>Kenya</td>
</tr>
<tr>
<td>260</td>
<td>Marsilea capensis A. Braun</td>
<td>DQ643295</td>
<td>DQ643363</td>
<td>DQ536327</td>
<td>DUKE</td>
<td>Ramberg s.n.</td>
<td>Botswana</td>
</tr>
<tr>
<td>261</td>
<td>Marsilea crenata C. Presl</td>
<td>DQ643296</td>
<td>DQ643364</td>
<td>DQ536328</td>
<td>DUKE</td>
<td>Kato J-38</td>
<td>Indonesia</td>
</tr>
<tr>
<td>262</td>
<td>Marsilea crenata C. Presl</td>
<td>DQ643297</td>
<td>DQ643365</td>
<td>DQ536329</td>
<td>DUKE</td>
<td>Kato s.n.</td>
<td>Thailand</td>
</tr>
<tr>
<td>263</td>
<td>Marsilea crotophora D.M. Johnson</td>
<td>DQ643298</td>
<td>na</td>
<td>DQ536330</td>
<td>H</td>
<td>Ritter et al. 4561</td>
<td>Bolivia</td>
</tr>
<tr>
<td>264</td>
<td>Marsilea distorta A. Braun</td>
<td>na</td>
<td>na</td>
<td>DQ536331</td>
<td>BM</td>
<td>Kornas 6271</td>
<td>Nigeria</td>
</tr>
<tr>
<td>265</td>
<td>Marsilea drummondii A. Braun</td>
<td>DQ643299</td>
<td>DQ643366</td>
<td>DQ536332</td>
<td>UC</td>
<td>Hoshizaki 577</td>
<td>Australia</td>
</tr>
<tr>
<td>266</td>
<td>Marsilea ephippiocarpa Alston</td>
<td>DQ643300</td>
<td>na</td>
<td>na</td>
<td>UC</td>
<td>Chase 2255</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>267</td>
<td>Marsilea fadeniana Launert</td>
<td>DQ643301</td>
<td>DQ643367</td>
<td>DQ536333</td>
<td>US</td>
<td>Evans and Maikweki 55</td>
<td>Kenya</td>
</tr>
<tr>
<td>268</td>
<td>Marsilea farinoso Launert</td>
<td>DQ643302</td>
<td>DQ643368</td>
<td>DQ536334</td>
<td>US</td>
<td>Faden 70/902</td>
<td>Kenya</td>
</tr>
<tr>
<td>269</td>
<td>Marsilea gibba A. Braun</td>
<td>DQ643303</td>
<td>DQ643369</td>
<td>DQ536335</td>
<td>US</td>
<td>Faden and Ng‘weno 87/33</td>
<td>Kenya</td>
</tr>
<tr>
<td>270</td>
<td>Marsilea macrocarpa C. Presl</td>
<td>DQ643304</td>
<td>DQ643370</td>
<td>DQ536336</td>
<td>UC</td>
<td>Hoshizaki 236</td>
<td>South Africa</td>
</tr>
<tr>
<td>271</td>
<td>Marsilea macropoda Engelm. ex A. Braun</td>
<td>DQ643305</td>
<td>DQ643371</td>
<td>DQ536337</td>
<td>DUKE</td>
<td>Hoshizaki 1458</td>
<td>USA: TX</td>
</tr>
<tr>
<td>272</td>
<td>Marsilea minuta L.</td>
<td>DQ643306</td>
<td>DQ643372</td>
<td>DQ536338</td>
<td>DUKE</td>
<td>Shimozono s.n.</td>
<td>Burma</td>
</tr>
<tr>
<td>273</td>
<td>Marsilea minuta L.</td>
<td>DQ643307</td>
<td>na</td>
<td>DQ536339</td>
<td>DUKE</td>
<td>Rajesh 87938</td>
<td>India</td>
</tr>
<tr>
<td>274</td>
<td>Marsilea minuta L.</td>
<td>DQ643308</td>
<td>DQ643373</td>
<td>DQ536340</td>
<td>DUKE</td>
<td>Hoshizaki 237</td>
<td>Africa</td>
</tr>
<tr>
<td>275</td>
<td>Marsilea mollis B.L. Rob. & Fernald</td>
<td>na</td>
<td>na</td>
<td>DQ536341</td>
<td>F</td>
<td>Johnson s.n.</td>
<td>Mexico</td>
</tr>
<tr>
<td>276</td>
<td>Marsilea mutica Mett.</td>
<td>DQ643309</td>
<td>DQ643374</td>
<td>DQ536342</td>
<td>DUKE</td>
<td>Hoshizaki 840</td>
<td>New Caledonia</td>
</tr>
<tr>
<td>277</td>
<td>Marsilea nashii Underw.</td>
<td>DQ643311</td>
<td>DQ643376</td>
<td>DQ536344</td>
<td>DUKE</td>
<td>Correll s.n.</td>
<td>West Indies</td>
</tr>
<tr>
<td>278</td>
<td>Marsilea nashii Underw.</td>
<td>DQ643310</td>
<td>DQ643375</td>
<td>DQ536343</td>
<td>F</td>
<td>Correll 46631</td>
<td>Turks & Caicos</td>
</tr>
<tr>
<td>DNA sample number</td>
<td>Taxon</td>
<td>rbcL</td>
<td>trnL-F</td>
<td>rps4</td>
<td>Herbarium of deposition</td>
<td>Voucher</td>
<td>Locality</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>279</td>
<td>Marsilea nubica var. gymnocarpa (A. Braun) Launert</td>
<td>DQ643312 na</td>
<td>DQ536345</td>
<td>BM</td>
<td>Smith 1988</td>
<td>Botswana</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Marsilea nubica var. gymnocarpa (A. Braun) Launert</td>
<td>DQ643313 na</td>
<td>DQ536346</td>
<td>BM</td>
<td>Kornas 6379</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>Marsilea oligospora Goodd.</td>
<td>DQ643314 DQ643377 DQ536347</td>
<td>UC</td>
<td>Tiehm 13199</td>
<td>USA: NV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Marsilea polycarpa Hook. & Grev.</td>
<td>DQ643315 DQ643378 DQ536348</td>
<td>DUKE</td>
<td>Pryer 960</td>
<td>Puerto Rico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>Marsilea quadrifolia L.</td>
<td>DQ643316 DQ643379 DQ536349</td>
<td>DUKE</td>
<td>Anno s.n.</td>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Marsilea schelpeana Launert</td>
<td>DQ643317 DQ643380 DQ536350</td>
<td>DUKE</td>
<td>Honshizaki 742</td>
<td>South Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>Marsilea vera Launert</td>
<td>DQ643318 na</td>
<td>DQ536351</td>
<td>BM</td>
<td>Burrows 3716</td>
<td>Botswana</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Marsilea vestita Hook. & Grev.</td>
<td>DQ643319 DQ643381 DQ536352</td>
<td>US</td>
<td>Howell 47460</td>
<td>USA: CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>Marsilea villifolia Brem. & Oberm. ex Alston & Schelpe</td>
<td>DQ643320 na</td>
<td>DQ536353</td>
<td>BM</td>
<td>Hansen 3232</td>
<td>Botswana</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>Marsilea villosa Kaulf.</td>
<td>DQ643321 DQ643382 DQ536354</td>
<td>US</td>
<td>Degener 9049</td>
<td>USA: HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>Pillularia americana A. Braun</td>
<td>DQ643288 DQ643383 DQ536355</td>
<td>DUKE</td>
<td>Pryer 978</td>
<td>USA: GA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. (A–C). A single randomly-chosen shortest tree from maximum parsimony analysis of Marsilea combined plastid DNA data matrix (rbcL, rps4, rps4-trnS spacer, and trnL-F spacer). Branch lengths are indicated by scale bars (except for longer branches of Fig. 1A); bootstrap support is indicated by branch thickness/grayscale. Nodes that collapse in the strict consensus are marked with a black dot. Tree length = 743; consistency index (CI) = 0.80; retention index (RI) = 0.96. Major clades are labeled A–L; the informal clade names (groups and subgroups) correspond to those used in Nagalingum et al. (2007).
pieces, facilitating amplification from degraded total DNAs. Primers for *rbcL* are: *rbcLF* ATGTCACCACAAACAGAGACTAAAGC; *rbcL* intF TGAGAAGCGTAAAACCAACCATAG; *rbcL* intR CTGTCTATCGATAACAGCATGCAT; and *rbcLR* GCAGCAGCTAAGTCCGCTCCA. The *rps4* exon and the adjacent
Clade L

subgroup
Nodohizae IV
(Western U.S. and western Mexico, Hawaii)

To Fig. 1b

branch length = 5 steps

bootstrap values 0-69%

bootstrap values 70-89%

bootstrap values 90-100%

Node collapses in strict consensus

Fig. 1 Continued.

rps4-trnS spacer were amplified in one piece using the primers **rps4F** ATGTTCCGTTATCGAGGACCT and **rps4R** TACCGAGGTCCGAAATC; problematic samples were amplified in two pieces using the internal primers **rps4** intF TGCCAAAAGAGAATCTATGG and **rps4** intR CGATGGGTTGTTAGTGTTAGTAG. Primers for the **trnL-F** spacer (primers E&F) were those of Nagalingum et al. (2007). All amplifications utilized Sigma Jumpstart Taq polymerase and reagents (Sigma-Aldrich, Inc., St. Louis, MO, USA) in 25 μl reactions with 3.0 mM MgCl₂. Thermocycler conditions were: 94 °C for
3 minutes followed by 37 cycles of 94 °C for 30 s, 56 °C for 30 s, 72 °C for 2 min, with a final extension of 3 min at 72 °C. Problematic taxa were amplified using Phusion polymerase (New England Biolabs, Ipswitch, MA, USA) according to manufacturer’s protocols. PCR products were sequenced in both directions using the Big Dye Terminator reagents on an 3130 automated sequencer following manufacturer’s protocols (Applied Biosystems, Inc.). Electropherograms were edited and assembled using Sequencher 4.10 (GeneCodes Inc., Ann Arbor, MI, USA), and the resulting sequences were aligned manually using SE-AL (Rambaut, 1996). All sequences were deposited in GenBank (Table 1). A 25 bp portion of the rps4-trnS spacer contained a homopolymer region of ambiguous alignment; this region was excluded from analyses. We analyzed the data using maximum parsimony rather than maximum likelihood because the number of steps in the resulting trees more clearly represents the number of base pair differences among accessions. Analyses were performed using PAUP* version 4.0 b10 (Swofford, 2003) with Fitch parsimony (equal weights, unordered characters, ACCTRAN optimization and gaps treated as missing data). Heuristic searches consisted of 1000 random taxon addition replicates of subtree-pruning-regrafting (SPR) and “keeping multiple trees” (MULTREES) with the number of trees limited to 10 per replicate to minimize extensive swapping on islands with many suboptimal trees; 10,000 shortest trees were saved. Support was estimated by 1000 bootstrap (BS) replicates, saving only 5 trees per replicate and ten trees per bootstrap replicate. The data matrix is available from the senior author or at ftp://ftp.flnmh.ufl.edu/Public/Marsilea/.

Results

In total, our dataset comprised 2629 characters for a total of 223 ingroup accessions, plus Pilularia americana A.Braun. We used existing sequence data for 33 accessions from 26 species and newly sequenced data for an additional 190 accessions from 12 species (Table 1).

Figure 1 (a, b, c) presents a single randomly-chosen maximum parsimony (MP) phylogram out of 10,000 shortest trees saved. Tree length = 743; consistency index (CI) = 0.80; retention index (RI) = 0.96; ACCTRAN optimization. BS values are indicated by line thickness and shading of branches.

The DNA data revealed that several specimens sampled in this study were misdetermined (based upon their anomalous placement in the tree and reexamination of the voucher specimens). DNA data were especially effective in clarifying the identification of sterile specimens of both North American and introduced origin.

The cladogram is distinguished by a basal dichotomy separating two strongly supported clades, earlier designated informally as Groups I and II (Schneider and Pryer, 2001; Nagalingum et al., 2007). Group I comprises informal subgroups “mutica”/A and “clemys”/B, and Group II includes subgroups “capensis”, “macrocarpa”, “nubica”, “marsilea I–III”, and “nordorrhizae I–IV”, here designated Clades C through H, respectively. Clades A
and C–H are Old World (Launert, 1968) and Clades A–G have glabrous leaves. Clade H includes hairy-leaved species from Australia. Clades I, J, K, and L are New World, have hairy leaves typical of the semi-aquatic ecotype, and include the majority of the specimens sequenced in this study. These latter four clades are united by high BS support into a single clade that corresponds to Johnson’s Marsilea sect. Nodorhiza (Johnson, 1986; Nagalingum et al., 2007), which includes six species (plus many names that Johnson synonymized).

Clade A is monotypic, consisting only of M. mutica Mett. It is clearly distinct from all other taxa in terms of DNA sequence and morphology, with its two-toned leaflets and petioles inflated at the apex to function as air bladders for floating leaves. This species has elliptical sporocarps that lack a transverse vein, are borne at the base of the petiole, and are either solitary or in clusters of 2–4 on branched pedicels. Indigenous to Australia and New Caledonia, M. mutica may be the most popular species in the water garden trade. The southeastern U.S. specimens plus one from Oklahoma are genetically distinct from specimens from Arizona and Virginia, a result suggestive of at least two distinct geographic origins for material introduced into the U.S.

Clade B includes several species that share the distinctive feature of linear rows of globose sporocarps borne on the petiole and a transverse sporocarp veining; this clade corresponds to Marsilea sect. Clemys (Johnson, 1986, 1988). The inclusion of M. scalaripes and M. deflexa in this clade confirms their hypothesized placement in the clemys subgroup (Nagalingum et al., 2007). However, these plastid data do not resolve the sampled taxa into monophyletic species. There are two well-supported (between 90–100% BS) clades, both of which include samples of M. polycarpa Hook. & Grev. and M. deflexa. The non-monophyly of species in this clade and Johnson’s (1986) putative designation of hybrids of these species may warrant a reexamination of determinations of these specimens and/or species concepts. Sample #175 from Nicaragua is sterile and its determination as M. deflexa is tentative.

Clade C contains five African species: M. capensis A.Braun, M. gibba A.Braun, M. crenulata Desv., M. distorta, and M. coromandelina, which as described by Launert (1968) are all of the glabrous leaflet type. Although this clade is strongly supported (100% BS), the plastid data fail to fully resolve relationships among these species.

Clade D contains eight African species: M. schelpeana Launert, M. aegyptica Willd., M. botryocarpa Ballard, M. ephippiocarpa Alston, M. farinosa Launert, and M. macrocarpa C.Presl, and partial plastid data also place M. vera Launert and M. villifolia Brem. & Oberm. ex Alston & Schelpe in this clade. In contrast to Clade C, all eight species of Clade D are of the hairy leaflet type (Launert, 1968).

Clade E consists of two samples of M. nubica A.Braun, a glabrous species from Africa that forms abundant colonies (Launert, 1968).

Clade F consists entirely of M. quadrifolia L., the type species of the genus, the only glabrous species from a cool-temperate climate, and a protected species in Europe. Four accessions from different continents, both native and introduced in range, display little sequence variation.
Clade G is moderately supported (84% BS) and includes a single accession of the African species *M. fadeniana* Launert, several Asian accessions of *M. crenata* C.Presl, and numerous accessions of *M. minuta* L., including several from introduced populations in the southeastern U.S. and Trinidad. The *M. crenata* – *M. minuta* complex is one of the largest and most variable groups within the genus (Launert, 1968). Earlier molecular data showed that *M. crenata* was nested within *M. minuta* (Nagalingum et al., 2007), and the addition of more accessions provides additional evidence that the two taxa are likely conspecific. Three samples from Trinidad (introduced) form a moderately supported clade with samples from Kenya and Nigeria. A single accession (#138) originally determined as *M. hirsuta* was probably misdetermined, but was not available for examination.

Clade H includes Australian hairy-leaved species: *M. drummondii* A.Braun, *M. exarata*, *M. hirsuta* R.Br., *M. angustifolia* R.Br., and *M. costulifera*. There are several subclades resolved, but only one has high (90–100%) bootstrap support. None of the species within this clade are resolved as monophyletic. DNA data fail to distinguish *M. hirsuta* from *M. angustifolia*. Morphologically, *M. angustifolia* differs from *M. hirsuta* in having smaller and more elongated leaves and smaller sporocarps (Aston, 1973). These characters, however, are typically considered insufficient for species distinction within the genus (Launert, 1968). This clade includes a single specimen (#131) determined as *M. crenata*; it is probably misdetermined, as all other specimens of *M. crenata* fall in Clade G.

The majority of the specimens sampled are in Clades I, J, K, and L; these form a highly supported group that include all species native to North and South America. Species within each clade are poorly resolved due to low sequence divergence. Both clades K and L include members of a complex of mainly North American species related to *M. vestita* Hook. & Grev. and *M. oligospora*. Although they receive moderate to high bootstrap support, clades K and L correlate strongly with geographic origin (K = U.S. Gulf coastal plain, Yucatan, Mexico, and the northern Caribbean; L = Mexico, western U.S., and Hawaii), but not with accepted species concepts.

Clade I consists primarily of accessions of *M. mollis* B.L.Rob. & Fernald from north central Mexico, Arizona, and one from Bolivia. One specimen from Zacatecas, Mexico is determined as *M. mexicana*; the molecular data do not distinguish it from *M. mollis*.

Clade J has partially resolved but unsupported internal structure and includes *M. aff. oligospora* from Florida, *M. ancylopoda* from west-central Mexico, Puerto Rico and northeastern Argentina, plus one sterile sample (#187) originally determined as *M. mollis* from Andean Ecuador (Lago San Pablo). Johnson (1986) cited three sterile collections of *M. mollis* from this same lake and suggested that many sterile Andean collections above 1500 m are probably referable to *M. mollis*. Our molecular data indicate these Ecuadorian collections are not *M. mollis*, but instead belong to this clade that includes *M. ancylopoda*.
Sample #38 (M. vestita from Louisiana) is sister to all other taxa in this clade in the strict consensus of all trees; its anomalous placement caused us to resequence this specimen, but the second sequence was identical to the first.

Clade K includes specimens of M. vestita, M. macropoda, and one of M. uncinata from the Gulf coastal plain of the southeastern U.S., together with several accessions of M. nashii from Yucatan and the northern Caribbean. Johnson (1986) regarded M. uncinata as a synonym of M. vestita, but considered M. nashii to be a valid species distinguished by its strongly nodding sporocarps (vs. slightly nodding to ascending in M. vestita), a feature which we have found to vary greatly across and within species, presumably in response to the microenvironment under which sporocarps develop. The molecular data provide no resolution within this clade.

Clade L consists mostly of specimens of M. vestita and M. oligospora from central Texas through the western United States and northwestern Mexico, plus a specimen of M. mucronata A.Braun from California, which Johnson (1986) regarded as a synonym of M. vestita. It also includes two specimens of M. ancylopoda from Venezuela and Peru, but they are not resolved as sister taxa. The clade also includes several accessions of M. villosa Kaulf., an endangered Hawaiian endemic, which form a weakly supported clade with M. vestita and M. fournieri, both from Baja California, Mexico. Johnson (1986) considered M. fournieri C.Chr. to be a small-leaved form of M. vestita. This tree is consistent with the hypothesis that M. villosa arose via long-distance dispersal of M. vestita from western Mexico to the dry lowlands of Moloka'i, Ni'ihau, and O'ahu where seasonal flooding of shallow depressions offers restricted habitats (Wester, 1994). This clade also includes samples of M. oligospora from northern California and Idaho; the type locality of this species is in Wyoming (see discussion of M. aff. oligospora in Florida in clade J). The ten samples of M. oligospora are not monophyletic and are scattered throughout this clade, but without resolution or support.

Evaluation of Florida Marsilea aff. oligospora

Based on our phylogenetic trees, the eight accessions of M. aff. oligospora from central Florida (samples 30–37) fall within Clade J; these plants form a weakly supported clade distinct from all others and are sister to M. ancylopoda from Mexico and Argentina. These eight plants also share a four basepair insertion in the trnL-F spacer that is absent in all other Marsilea; this indel is an unambiguous synapomorphy that distinguishes these Florida plants. Jacono and Johnson (2006) tentatively identified these populations as M. aff. oligospora, although noting subtle morphological differences from western U.S. M. oligospora, and they regarded the Florida populations as introductions from the western U.S. Our data contradict their hypothesis; “true” M. oligospora (e.g., samples 93 and 94, from near the type locality in the western U.S.; Jackson Hole, Wyoming) fall in clade L, and our data clearly distinguish
the Florida populations from all other taxa. The molecular data indicate that these Florida populations are nested within *M. ancylopoda* from Mexico, Puerto Rico, Argentina, and Ecuador (based on current sampling).

According to Johnson's (1986) morphological concept of *M. ancylopoda*, the species includes considerable variation in sporocarp morphology, but the sporocarps always lack a superior tooth. The Florida populations of *M. aff. oligospora* (sensu Jacono and Johnson, 2006) bear sporocarps with prominent tooth. The presence of toothed and toothless taxa together in Clade J indicate that this character may be homoplasious and may not provide reliable characters for diagnosis of species, at least within this species complex.

The data show that central Florida specimens of *M. aff. oligospora* (samples 30–37) are distinct from all other sampled *Marsilea* and might represent an undescribed species or a morphological and molecular variant of *M. ancylopoda*. We are unable to match them with *Marsilea* from any other geographic locality. Our sampling of the Caribbean, Central America, and northern South America is poor, and more extensive sampling might provide a match for the Florida populations. The type of *M. ancylopoda* is from coastal arid lowlands just north of the Gulf of Guayaquil, Ecuador. Future studies should include material from the type locality. Although our sampling does not include material from the type locality of *M. ancylopoda*, it does include Peruvian material from similar low-lying habitats along the arid west coastal strip of South America. This specimen (#177, *Llatas & Quiroz* 2401), is in Clade L where it groups weakly with *M. vestita* from the desert regions of New Mexico and Arizona. Additional sampling from low elevation neotropical localities is also needed to seek matches for *M. ancylopoda* from west-central Mexico and northeastern Argentina, as included in Clade J of this study. Until further sampling yields a match for the Florida plants, we suggest that the populations should be regarded as endemic and given protected status by vegetation managers until its status as native or alien is resolved more definitively.

Evaluation of Morphological Species Concepts in *Marsilea* Section *Nodorhizae*

These plastid data provide an independent dataset with which to evaluate morphological species concepts in *Marsilea*, especially for the North American species that were heavily sampled. The failure of the plastid data to resolve specimens into clades that correspond to morphospecies is most obvious in *Marsilea* sect. *Nodorhizae* (*M. oligospora*, *M. mollis*, *M. villosa*, *M. vestita*, *M. macropoda*, *M. nashii*, and *M. ancylopoda*). Instead, plastid data group these seven species into four distinct clades with strong geographic structure that correspond to climactic and habitat zones: Clade L includes western North American accessions from ephemeral ponds in arid climates; Clade K includes plants from humid, seasonally influenced low elevation floodplains and wet depressions of the Gulf coastal plain, Florida, and the northern Caribbean; Clade I consists only of *M. mollis* from Arizona to Bolivia; Clade J includes *M. ancylopoda* (from Mexico and Argentina), the central Florida material (*M. aff.
ancyllopoda) and nearby Puerto Rico, plus a geographically disparate accession from the montane highlands of north central Ecuador and an aberrant sterile specimen from Louisiana (#038).

The incongruence of these plastid trees and the currently accepted species of Marsilea may have several explanations, which we discuss below. Extensive hybridization among Marsilea species might have led to chloroplast capture of a single plastid type among many species resulting in plastid trees that do not accurately reflect phylogenetic relationships. Johnson (1986) cited several specimens as putative interspecific hybrids, based solely on interpretation of subtle morphological characters. To our knowledge, no one has created artificial Marsilea hybrids, nor used molecular data to demonstrate the parental origin of putative hybrids. Additionally, the non-monophyly of species may be due to incomplete lineage sorting. However, we did not examine the individual gene trees to determine if this could be the cause of non-monophyly.

The absence of monophyletic species may also be due to the presence of cryptic species. This is exemplified by our finding that the plants originally identified as M. aff. oligospora are a potentially undescribed species (see above). These plants display subtle morphological differences compared to all other known Marsilea, and molecular data indicate that they have a unique molecular signature as well. Therefore, it is possible that through more intense sampling and reassessment of morphology, the non-monophyletic species may reveal the presence of underlying cryptic species.

Through our analyses we discovered several accessions that were misidentified, and it is possible that some of polyphyletic species are due to identification errors. However, given the extent of polyphyletic species (and that many specimens were annotated by D.M. Johnson), we suggest that this is unlikely.

A final explanation for failure of the existing alpha-taxonomy could be an inflated number of species within Marsilea sect. Nodorhizae (clades J, K, L). Many species of Marsilea are based upon subtle morphological traits that are phenotypically plastic or that represent homoplasious local adaptations to environmental conditions. We found that plant size, leaflet size, extent of leaflet hairiness, the angle and extent of sporocarp nodding, and the curvature of the peduncle demonstrated variability that might preclude their taxonomic utility for species delimitation.

It was beyond the scope of this project to re-examine all of the specimens used in this study. However, we suggest that future work include re-examination of the morphology of multiple accessions within a phylogenetic framework to ascertain the reliability of the existing characters for species delimitation and to determine if cryptic species are present. There is also the need for more extensive sampling and sequencing of more variable plastid regions, to be contrasted with nuclear gene data sets, which will provide a better framework to settle questions of hybridization and incomplete lineage sorting as well as provide greater resolution and support for the relationship among species.
Conclusions

Using the extensively sampled phylogeny, we found that Florida plants earlier identified as *M. aff. oligospora* possess a unique molecular signature (an insertion in the *trnL-F* spacer) but morphological characters that distinguish it from other taxa in *M. sect. Nodorhizae* are subtle and require more detailed analyses (Jacono and Johnson, 2006). It is possible that these plants represent an undescribed, cryptic species endemic to Florida, or a geographically restricted variant of an existing species. Our plastid trees reveal the same major clades as the previous study by Nagalingum et al. (2007). Although our increased taxon sampling reveals no conflicts, many species are not resolved as monophyletic within these informally named clades. We were unable to determine if this is due to hybridization, incomplete lineage sorting, misidentification of specimens, the presence of cryptic species, and/or inappropriate morphological characters for species delimitation—the present data are inadequate to resolve these large taxonomic questions. We advise that the existing alpha-taxonomic classification and circumscription of species in *Marsilea*, especially *M. sect. Nodorhizae*, should be treated with caution.

ACKNOWLEDGMENTS

This work was funded by Florida Dept. of Environmental Protection Bureau of Invasive Plant Management Grant #6770 and by The St. Johns Water Management District Contract #74607. We thank curators of many herbaria for permission to destructively sample specimens; we are especially grateful to Kent Perkins (FLAS) for management of loans. We thank Marian Chau, Robert Gibson, and Siriporn Zangsontiporn for specimens.

LITERATURE CITED

Effect of Habitat Modification on the Distribution of the Endangered Aquatic Fern *Ceratopteris pteridoides* (Parkeriaceae) in China

YUAN-HUO DONG
Department of Biologic Technology, College of Life Sciences, Jianghan University, Wuhan 430056, China
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China

QING-FENG WANG
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China, email: qfwang@wbgcas.cn

ROBERT WAHITI GITURU
Botany Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya, email: wahitigitura@yahoo.com

ABSTRACT.—Sixteen sites in China where *Ceratopteris pteridoides* occurs based on historical records and/or from observations were surveyed during preliminary field surveys. Eight previously recorded populations were found to have been extirpated. Decline in natural populations of *C. pteridoides* has resulted from the destruction or complete loss of its primary habitat. Analysis of 17 parameters of water quality indicated that differences in pH and dissolved oxygen might be principal factors determining the distribution and occurrence of *C. pteridoides*. The sites of the extirpated populations had higher water pH values than those of the sites of the extant populations ($P < 0.05$). The value of dissolved oxygen concentration at the sites of the extirpated populations was lower than at the sites of the extant populations ($P < 0.05$). The degeneration of primary habitats, a decline in the area of wetland coverage and deterioration of water quality caused by human activities are identified as the likely key factors responsible for the reduction in *C. pteridoides* populations. Because the habitat and population characteristics of eleven remaining populations were different, different sites should adopt different conservation methods as appropriate. Some small populations could be conserved by establishing conservation areas; other relatively large populations could be conserved by establishing nature reserves.

KEY WORDS.—*Ceratopteris pteridoides*, endanger, habitat modification, distribution, conservation

Ceratopteris pteridoides (Hook.) Hieron. (Parkeriaceae), an annual diploid ($n = 39$), is an aquatic, homosporous, floating fern. The species displays clonal growth by means of numerous marginal leaf buds that rapidly develop into plantlets (Hickok et al., 1987). Both spores and the plantlets from marginal leaf buds are dispersed mainly by water flow. *Ceratopteris pteridoides* mainly grows in ponds, lakes, rivers, and ditches (Lloyd, 1974). The species has principally been identified in Central and South America, Southeastern Asia, Eastern India, and China (Diao, 1990; Hickok et al., 1995). In China, *C.*

*Corresponding author: E-mail: dongyh2008@yahoo.com.cn; Tel: +86-27-84230422
pteridoides is mainly distributed in central, eastern, and southern China (Diao, 1990). Although *C. pteridoides* was widely distributed in China, in recent decades the species has declined rapidly in the numbers and sizes of populations, and has even disappeared from many locations (Yu, 1999; Dong et al., 2007). *Ceratopteris pteridoides* is now considered endangered and is listed in the second category of the National Key Protected Wild Plants in China (Yu, 1999). Several factors, including the degeneration of primary habitats, the decline in area of coverage of wetlands, and the deterioration of water quality due to human activities, have been identified as being responsible for the reduction in *C. pteridoides* populations (see Dong et al., 2007). However, no data have been provided to support these assertions. Earlier studies on *Ceratopteris pteridoides* have mainly focused on taxonomy and morphology (Hickok et al., 1995; Fan and Dai, 1999; Carquist and Schneider, 2000). In recent years, Dong et al. (2007, 2010), using RAPD and ISSR data, revealed low levels of genetic diversity (the percentage of polymorphic bands (PPB): RAPD, 33.6%; ISSR, 25.2%) and high levels of gene flow between the remaining *C. pteridoides* populations in China. Tao et al. (2008) reported that bensulfuron-methyl inhibits gametophyte growth and sex organ differentiation of *C. pteridoides* at low concentration and may pose a risk to sexual reproduction of *C. pteridoides* in the field. However, the information available on the conservation biology of *C. pteridoides* in China is limited in comparison with that for the more widely studied closely related species *Ceratopteris thalictroides* (L.) Brongn. This latter species is now also considered to be endangered in China (Yu, 1999).

It is probable that additional studies on the various aspects of the conservation biology of *Ceratopteris pteridoides* will provide information that will justify more stringent conservation practices for this rare plant. The important objective in the present study was to report the current distribution of *C. pteridoides* in China, its habitats, and population characteristics. Another aim was to investigate the natural distribution of *C. pteridoides* in China in relation to habitat characteristics, especially wetland and water chemistry parameters, in order to contribute to the available information on the biology of this endangered species.

Materials and Methods

From August of 2003 to October of 2006, sixteen sites throughout the historic geographic distribution of *Ceratopteris pteridoides* in China were investigated (Fig. 1). The sites were identified on the basis of records on labels of herbarium specimens and/or observations during field surveys. The sixteen sites surveyed are located in Hubei, Jiangxi, Anhui, Zhejiang, Jiangsu, Fujian and Shandong provinces in Mainland China. At each sampling station elevation, latitude, and longitude were measured by Global Positioning System (GPS). The habitat characteristics of *C. pteridoides* were recorded (Table 1). The population characteristics of the species including population numbers and
<table>
<thead>
<tr>
<th>Location</th>
<th>Population code</th>
<th>Extant/ extinct population</th>
<th>Elevation (m)</th>
<th>Latitude(N)/ Longitude(E)</th>
<th>Habitats</th>
<th>Population area (m²)</th>
<th>Population size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaoang, Hubei province</td>
<td>HB-1</td>
<td>Extant</td>
<td>24</td>
<td>29°55'/113°13'</td>
<td>Ditch, Fishpond</td>
<td>700-800</td>
<td>6000-10000</td>
</tr>
<tr>
<td>Jiayu, Hubei province</td>
<td>HB-2</td>
<td>Extant</td>
<td>19</td>
<td>29°54'/114°01'</td>
<td>Lake</td>
<td>40-50</td>
<td>200-500</td>
</tr>
<tr>
<td>Liangzhuhai, Hubei province</td>
<td>HB-3</td>
<td>Extant</td>
<td>15</td>
<td>30°15'/114°34'</td>
<td>Lake</td>
<td>400-500</td>
<td>10000-15000</td>
</tr>
<tr>
<td>Yangxin, Hubei province</td>
<td>HB-4</td>
<td>Extant</td>
<td>14</td>
<td>29°55'/113°59'</td>
<td>Fishpond</td>
<td>1800-2000</td>
<td>50000-60000</td>
</tr>
<tr>
<td>Jiayu, Hubei province</td>
<td>HB-5</td>
<td>Extant</td>
<td>19</td>
<td>29°55'/113°59'</td>
<td>Pond</td>
<td>30-50</td>
<td>500-1000</td>
</tr>
<tr>
<td>Ruichang, Jiangxi province</td>
<td>JX-1</td>
<td>Extant</td>
<td>21</td>
<td>29°48'/115°44'</td>
<td>Lake</td>
<td>200-300</td>
<td>20-50</td>
</tr>
<tr>
<td>Huzhou, Zhejiang province</td>
<td>ZJ-1</td>
<td>Extant</td>
<td>-</td>
<td>30°51'/120°04'</td>
<td>Wetland, pond</td>
<td>40-50</td>
<td>500-1000</td>
</tr>
<tr>
<td>Wuyishan, Fujian province</td>
<td>FJ-1</td>
<td>Extant</td>
<td>-</td>
<td>27°46'/118°01'</td>
<td>Ditch</td>
<td>3-5</td>
<td>3-5</td>
</tr>
<tr>
<td>Nansihu, Shandong province</td>
<td>SD-1</td>
<td>Extinct</td>
<td>10</td>
<td>34°40'/117°15'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taihaizhu, Hubei province</td>
<td>HB-6</td>
<td>Extinct</td>
<td>14</td>
<td>29°58'/115°37'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haikouhu, Hubei province</td>
<td>HB-7</td>
<td>Extinct</td>
<td>18</td>
<td>30°02'/115°17'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honghu, Hubei province</td>
<td>HB-8</td>
<td>Extinct</td>
<td>24</td>
<td>29°55'/113°13'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changhu, Hubei province</td>
<td>HB-9</td>
<td>Extinct</td>
<td>19</td>
<td>30°44'/112°12'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulanhu, Hubei province</td>
<td>HB-10</td>
<td>Extinct</td>
<td>-</td>
<td>31°06'/112°12'</td>
<td>Reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futouhu, Hubei province</td>
<td>HB-11</td>
<td>Extinct</td>
<td>20</td>
<td>30°01'/114°17'</td>
<td>Lake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dongliu, Anhui province</td>
<td>AH-1</td>
<td>Extinct</td>
<td>16</td>
<td>30°12'/116°54'</td>
<td>Lake lost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DONG ET AL.: CONSERVATION OF CERATOPTERIS PTERIDOIDES IN CHINA

population area, population sizes (numbers of individuals), and companion species were investigated (Table 1).

Eleven sites of the sixteen sites were investigated in 2003. Thus, in order to decrease statistical error, the water chemistry parameters of only the 11 sites surveyed from August to September of 2003 were analyzed (Fig 1). Five sites which still have populations of *Ceratopteris pteridoides* were designated as type A sites while six sites from which the species has been extirpated were designated as type B sites (Table 2). Seventeen water parameters were measured at seventeen sites (Table 2). The chemical parameters, including NO$_3$-N, NH$_3$-N, PO$_4^{3-}$, total Cl, Ca, Mg, Fe, Cu, Zn, Mo, and Cr$^{6+}$, were measured from the sample with a multi-parameter ion-specific photometer (C200, Hanna Co., Italy) in the laboratory using a 500 ml water sample collected in a plastic bottle in eleven sites respectively.

pH was measured with a portable meter (HI 98107, Hanna Co., Italy), as was conductivity (HI 983004, Hanna Co., Italy). Dissolved oxygen, dissolved carbon dioxide, alkalinity, and hardness were measured in the field with a portable test kit (HI 3814, Hanna Co., Italy). The water temperature of the water sample sites were about 25–30°C from August to September.

The mean values of the 17 chemistry parameters of water at the type A and type B sites were compared statistically using a one-way ANOVA when the
variance was homoscedastic and using a rank sum test when the variance was heteroscedastic. The homogeneity of variance of all factors was assessed using the Bartlett test (Li, 2002). Any factors that showed significant difference between the type A and type B sites were evaluated further by analysis of multiple comparison using Least Significant Difference. Level of significance was set at $P < 0.05$.

RESULTS

A total of eight extant populations of *Ceratopteris pteridoides* were found in the 16 sites surveyed from August of 2003 to October of 2006 across the natural geographic distribution range of *C. pteridoides* in Mainland China (Fig. 1, Table 1). These extant populations of *C. pteridoides* were found growing in ponds, lakes, rivers, and ditches. These extant populations are located mainly in the middle and lower reaches of the Yangtze River, which is also the site of thousands of shallow lakes most of which are interconnected to the main artery of the Yangtze River. With the exception of five populations (Jx-1, FJ-1, HB-2, ZJ-1 and HB-5) that had fewer than 1000 individuals, the rest of the populations (HB-1, HB-3, and HB-4) had more than 1000 *C. pteridoides* individuals per population. Most of the individuals were floating. *Ceratopteris pteridoides* mainly grows together with *Nelumbo nucifera* Gaertn., *Hydrocharis dubia* (Blume.) Backer., *Phragmites communis* Trin., *Alternanthera philoxeroides* (Mart.) Griseb., *Phalaris arundinacea* Linn., *Trapa bispinosa*
Roxb., and Potamogeton distinctus A. Benn. *Ceratopteris pteridoides* was the dominant species in three of the extant populations including (HB-1, HB-4, HB-5). The habitats at the sites of the extinct populations of *C. pteridoides* have been greatly modified. At some stations, including at the Nansi, Taibai, Haikou, Honghu, and Changhu Lakes, water pollution was clearly evident, while some lakes and wetlands including Dongliu Lake (AH-1 population) in Anhui province have vanished (Table 1). Area of coverage of wetland in site of ZJ-1 population was reduced due to uncontrolled real estate development.

Analysis of the 17 parameters of water quality indicated that type B sites had significantly higher mean pH (P < 0.05) and lower dissolved oxygen (P < 0.05) than type A sites (Table 2). None of the remaining chemical variances differed significantly between type A sites and type B sites.

Discussion

Various kinds of human activities can bring about changes of wetlands and aquatic habitats (Carrier, 1991). Loss of habitat is the single most important cause of extinction of species (Primack, 1993). The accelerated loss of habitat of *Ceratopteris pteridoides* in China, together with a decline in the wetland surface area might have put the species at the risk of becoming extirpated in this expansive region and resulted in the extinction of *C. pteridoides* population at some sites. In recent decades, *C. pteridoides* in Mainland China have declined rapidly in number of individuals and populations, and plants have disappeared from many locations. For instance, loss of Dongliu Lake, which was part of the Yangtze River system in Anhui province undoubtedly led to the disappearance of this species from the site. Excessive aquaculture and water pollution have been identified as the most likely cause for the extinction of *C. pteridoides* at Haikou, Taibai, and Honghu Lakes (Jian et al., 2001; Lu and Jiang, 2003).

Five of the eight extant populations of *Ceratopteris pteridoides* in Hubei province of central China are located in an area which was occupied by a large wetland known as the Yunmeng marshland in ancient times. In 239 B.C. the Yunmeng marshland was reputed to have a surface area spanning more than six million ha and plants of the genus *Ceratopteris* were recorded there (Liu, 1984; Shi et al., 1989; Diao, 1990). Over a period in excess of two thousands years, the surface coverage of the wetland has continued to decline at different rates in different historical periods, mainly due to overexploitation, irrigation and tourism activities. As a result, the number of lakes in Hubei Province, which is known in China as “The province of a thousand lakes”, decreased from 305 in the 1950s to 217 currently. Compared with the 1950s, the total area of lakes in Hubei Province was reduced by 66% to 2438.6 km² at present (Wang et al., 2009). In addition, due to overexploitation and uncontrolled real estate development (Wan et al., 2004), the number of urban lakes in Wuhan of Hubei Province was reduced from 89 in 1949 to 38, within which *C. pteridoides* only exists in one lake (HB-3 population) in this study (Table 1). Our own field investigations also have indicated that population ZJ-1 is in imminent danger of extirpation due to rapid expansion of Huzhou city. The current body of evidence
gathered in several studies, including our present study, shows that the progressive reduction in the numbers and sizes of *C. pteridoides* populations is likely attributable to sedimentation from the upper reaches of the Yangtze River (Shi *et al.*, 1989) and to human activities including farming, excessive aquaculture, overexploitation of water bodies, building of irrigations works, reclamation of land from lakes, tourism activities, uncontrolled real estate development and run-off water pollution (Shi *et al.*, 1989; Jian *et al.*, 2001; Lu and Jiang, 2003; Dong *et al.*, 2007).

Potamic and lacustrine water chemical properties are among the principal factors determining the kind, number, and distribution of aquatic plants (Shi *et al.*, 1989; Yang and Ye, 2001; Liu *et al.*, 2003). Hydrobiological communities are greatly threatened by water pollution (Moyle and Leidy, 1992). Analysis of 17 parameters of water quality indicated that type B sites had significantly higher mean pH (P < 0.05) than type A sites (Table 2) in 2003. The mean pH of type A was 7.16 ± 0.49 in August of 2011, and lower than that of type B sites, which was consistent with the results in 2003. At the same stations, some sites of extant populations had higher pH values than the recorded primary habitat indicated on the labels of herbarium specimens. For example, the mean water pH value at Haikou Lake site has risen from 6.3 recorded in 2001 to 7.9 (Jian *et al.*, 2001). While the pH value at both type A and Type B sites indicated a progressive rise in the recent past, the proportional increase is markedly higher for the type B sites. Significant variability of pH at different sites might be largely due to different levels of pollution at the sites. Excessive aquaculture and land usage (Ivahanenko *et al.*, 1988; Downey *et al.*, 1994) could have a profound influence on pH variation in wetlands.

Significant changes in water pH may interfere with physiological activities of aquatic plants (Tang *et al.*, 2002). Water pH affects the bioavailability of Ca, Fe, Mn and Zn to rooted aquatic macrophytes (Jackson *et al.*, 1993). Furthermore, variation of pH may upset the subtle ionic balance in the environment; For example, pH variability affects the ionic balance between ammonium and ammonia in water (Körner *et al.*, 2001). pH variation has been shown to be the principal factor affecting the distribution of *Ceratopteris thalictroides*, a closely related species which is also endangered in China (Dong *et al.*, 2005), as well as the endangered aquatic fern *Isoëtes sinensis* Palmer (Wen *et al.*, 2003). Considering that pH may influence the absorption of ions and metabolic activities of aquatic plants including *C. pteridoides*, it could be an important factor leading to extirpation of this endangered species from its habitats. This finding suggests that change in pH may be associated with the disappearance of *C. pteridoides* populations from the type B sites.

The different tests of water chemical parameters of these sample sites indicated that type B sites had significantly lower dissolved oxygen (P < 0.05) than type A sites (Table 2). Several studies, including Yang *et al.* (2001) and Shi *et al.* (1989), have demonstrated that dissolved oxygen is a principal factor that affects the distribution of aquatic plants. The absorption of minerals by plant roots is closely related to respiration in plants. Variation in oxygen availability influences absorbability of minerals by the roots. Generally
speaking, the higher the oxygen concentration, the more efficient the absorption of minerals by roots. *Ceratopteris pteridoides* is primarily a floating plant in lakes and ponds and absorbs minerals chiefly through its roots. It is probable that the lower concentrations of dissolved oxygen at these sites of extinct populations affects the intake of oxygen and consequently respiration in *C. pteridoides* plants, thus interfering with the physiological activities of the plants. This could be detrimental to the health of the populations and may have contributed to the extirpation of the species from these sites. Therefore, the significant differences in pH and dissolved oxygen between type A and type B sites indicated that distribution and occurrence of *C. pteridoides* are closely correlated with water chemical characteristics.

Biodiversity has declined in freshwater lakes in China in recent times (Jian et al., 2001). The factors leading to biodiversity reduction mainly include water pollution and excessive aquaculture, with the latter having been identified as the single most important factor (Jian et al., 2001). At the sites of the eight extinct populations at Taibai, Haikou, Honghu and Changhu Lakes, observations and interviews with the locals revealed a long history of intensive aquaculture. It is likely that this is a major reason for the decline of *Ceratopteris pteridoides* at these sites and elsewhere in China. Field surveys also showed that fishing activities by local fishermen destroyed *C. pteridoides* in the Yangxin (HB-4) and Jiayu (HB-5) populations in Hubei province, which compromised the self-maintenance and self-renewal abilities of the populations, leading to gradual decline of the populations.

Five populations among the eight extant populations of *Ceratopteris pteridoides* were relatively small with fewer than 1000 individuations (Table 1). Most of the eight extant *C. pteridoides* populations grew in ponds, ditches, shallow lakes, and kaleyards, while others (ZJ-1, HB-3, and HB-5) were located among city regions that have undergone rapid expansion. Such populations can be highly susceptible to the effects of environmental changes and disasters, which heighten the possibility of species extirpation.

We have shown that the distribution and occurrence of *Ceratopteris pteridoides* are correlated with water chemistry, with pH value and dissolved oxygen being the most important factors. Evidence from the present study supports the idea that the observed decline in *C. pteridoides* populations is associated with the destruction and the loss of their primary habitats, especially the reduction in wetland areas and the increase in water pollution. Human activities such as farming, tourism, real estate development, fisheries, and run-off water pollution are the most important reasons. It is of critical importance that measures are taken to establish appropriate conservation strategies to stem and even reverse the decline in populations of *C. pteridoides* observed in mainland China.

Both *in situ* and *ex situ* conservation approaches are important conservation strategies for rare and endangered species. However, the most appropriate conservation strategy is to protect the habitats of the species (Primack 1993). Because habitat and population characteristics of the remaining populations are different, a uniform approach may not apply for all sites, and different sites should adopt different conservation methods as appropriate. Some small
populations such as Jx-1, FJ-1, HB-2, ZJ-1, and HB-5 could be better conserved by establishing small, protected areas. Other relatively large populations, such as HB-1, HB-3, HB-4 should be conserved by establishing nature reserves. At the same time, there should be a government policy implementing complete cessation of farming activities in selected areas to allow forest to regenerate.

In recent years, in order to protect natural species and renew lake habitat, some government policies have been implemented at Xilianghu Lake (HB-2), Liangzihu Lake (HB-3) in Hubei province, including a complete cessation of farming activities, purse seine cultures, and fill-up of urban lakes. The HB-3 population, located at Wuhan, Hubei province, could be better conserved by actualizing local projects such as the expansion of lake areas and the connection of the surrounding lakes. These policies and measures could be a good approach towards improving the lacustrine ecosystem and protecting threatened aquatic life forms including *Ceratopteris pteridoides*. At the same time, in order to better protect threatened aquatic species, we advise establishing a list of lakes for conservation in China, and taking effective and long-term population and community characteristic measurements of these lakes, as well as monitoring the changes in water chemical parameters.

Botanical gardens have played an increasingly important role in the *ex situ* conservation of rare and endangered plants (Mauder, 1994). Wuhan Botanical Garden (WBG), is ranked as one of three core research botanical gardens in China. It houses the largest aquatic plant garden in East Asia, and has theme gardens such as Central China relicts, and a rare and endangered plant garden. WBG currently plays an important role in the conservation of aquatic species. The botanical garden has shown preliminary success in the conservation of *Ceratopteris* including *C. pteridoides* and *C. thalictroides*. *Ceratopteris pteridoides* was mainly protected at a pond in a zone of aquatic plants. The species in WBG mainly grows together with *Nelumbo nucifera* Gaertn., *Hydrocleys nymphoides* (Willd.) Buchenau., *Potamogeton lucens* Linn., *Triarrherca sacchariflora* (Maxim.) Nakai., *Pistil stratiotes* L., and *Vallisneria natans* (Lour.) Hara.

A key aim of conservation, in addition to habitat preservation, is to maintain a species’ existing level of genetic variation in order to maximize its chances for persistence in the face of changing environments (Keiper and McConchie, 2003). Dong *et al*. (2007, 2010) used ISSR and RAPD data that revealed low levels of genetic diversity at the species level and low levels of genetic variation among populations of *Ceratopteris pteridoides* in China. The studies have also demonstrated a high level of interpopulation gene flow in the extant populations of *C. pteridoides* in China. In light of the genetic information for *C. pteridoides*, we recommend establishing as many *in situ* conservation spots as possible and cross-transplanting plants between populations in order to increase gene flow and preserve to the greatest extent possible the genetic resources of the species.

Acknowledgments

The authors are particularly indebted to Dr. Jin-Ming Chen, Dr. Can Dai, Xing-Wei Wang, and Yu-Dei Huang for their assistance. The study was supported by grants from the Natural Science
Foundation of China (No. 31170341), the Natural Science Foundation of Hubei province (No. 2011CDB001), Science and Technologic Project of Wuhan City (201150699189-02), and State Key Laboratory of Lake Science and Environment (2010SKLJ011), and the “100 Talents Program” of CAS granted to WQF (KSCX2-YW-Z-0805).

LITERATURE CITED

Negative Gravitropism in Dark-Grown Gametophytes of the Fern Ceratopteris richardii

HIROYUKI KAMACHI* and MUNENORI NOGUCHI
Graduate School of Science and Engineering (Science), University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

ABSTRACT.—This study examined whether gravity influences the growth direction of dark-grown gametophytes of the fern Ceratopteris richardii. Analyses of directional growth of gametophytes in response to gravitropic stimulation demonstrated that gametophytes showed negative gravitropism. Dark-grown gametophytes of dkg1 hert mutants, which germinate in complete darkness, displayed a more distinct negative gravitropism. Unlike hert spores, dkg1 hert spores do not require light irradiation to induce spore germination. Therefore, light irradiation on hert spores was possibly inhibiting the negative gravitropism of hert gametophytes. In the present study, prolonged white-light irradiation on hert spores inhibited negative gravitropism in the gametophytes. Light irradiation on spores therefore affects the later negative gravitropism of dark-grown gametophytes.

KEY WORDS.—Ceratopteris richardii, gametophyte physiology, gravitropism

Spore germination is the first event in the life cycle of ferns. Germinated spores progress autotrophically through many developmental stages to form a mature gametophyte with rhizoids and gametangia (Momose, 1967; RagHAVAN, 1989). During this time many environmental factors influence development and morphogenesis of the fern gametophyte. In vascular plants gravity is an important factor controlling plant morphogenesis and directional growth (Morita and Tasaka, 2004; Hoson et al., 2010); similar responses in fern gametophytes have not yet been described in detail.

The fern Ceratopteris richardii Brogn. is often used as a plant model system (Hickok et al., 1995; Banks, 1999; Salmi et al., 2005). In the germinating spores of C. richardii, Edwards and Roux (1994, 1998) found that the primary rhizoid emerged in a downward direction with respect to gravity, suggesting that germinating spores could sense the direction of gravity. After germination the rhizoid failed to respond to changes in gravity, indicating that the rhizoid itself was not gravitropic (Edwards and Roux, 1994). Gravitropism in Ceratopteris richardii gametophytes other than in the rhizoids has not yet been examined. Investigation of gravity sensing by gametophytes is of interest because it is a poorly understood environmental response in gametophyte development. If C. richardii gametophytes can sense the direction of gravity and then show gravitropism, the gametophytes will be useful for investigating mechanisms of

*Corresponding Author: E-mail: kamachi@sci.u-toyama.ac.jp
gravitropic responses in non-vascular plants. In the present study, *C. richardii* gametophytes were examined for directional gravitropic responses.

Materials and Methods

Morphogenesis between male and hermaphroditic gametophytes varies greatly in *Ceratopteris richardii* (Kamachi *et al.*, 2004). Male gametophytes, which are induced by the pheromone antheridiogen (Kamachi *et al.*, 2007), were insensitive to light for induction of asymmetric cell division followed by rhizoid development (Murata and Sugai, 2000), suggesting that male gametophytes might be less sensitive to environmental changes. Therefore *her1* mutants, which are antheridiogen-insensitive mutants and do not develop into males (Banks, 1994), were used for this work. In this study, *dkgl her1* double mutants were also used. The *dkgl* (*dark-germinator 1*) mutant allele enables the spore to germinate in complete darkness (Scott and Hickok, 1991; Kamachi *et al.*, 2004).

Ceratopteris richardii spores of *her1* and *dkgl her1* mutants were collected from fertile fronds in a greenhouse at Toyama University. The spores were sterilized for 3 min in commercial 5% NaOCl bleach, 0.02% (w/v) Triton X-100, rinsed with distilled water, and incubated in the dark for 7 days to synchronize germination. Spores were then irradiated for 24 h at 26°C under white light (5.0 J m⁻² s⁻¹), and germinated in the dark to obtain strap-shaped gametophytes (Fig. 1B). Spores of the *dkgl her1* mutants were germinated in the dark immediately after the sterilization because these mutants can germinate in the dark. A 1:4 dilution of Murashige and Skoog (MS) salt mixture (Wako Pure Chemical Industries, Osaka, Japan) solidified with 0.3% (w/v) Bacto Agar (Difco) was used as the germination medium.

Gravitropism of *Ceratopteris richardii* gametophytes was evaluated in 9-day old gametophytes grown on agar medium in the dark. Observations were made using a stereoscopic zoom microscope (Nikon, SMZ-1000). In each experiment 50–100 gametophytes were classified into three types: gametophytes that grew

![Figure 1](image-url)
upward, downward, and horizontally with respect to the surface of the agar medium. Results were expressed as mean values of percentages obtained from three separate experiments.

RESULTS

Figure 1 shows typical morphological profiles of 7-day old Ceratopteris richardii gametophytes grown in the light (A) and dark (B). The dark-grown gametophytes have a strap-shape with 3–6 rows of cells in a single plane, an apical meristem, a subapical elongation zone, and a basal growth cessation zone where the cells are extremely elongated. A similar growth habit was also described in a study by Murata et al. (1997).

Dark-grown gametophytes were first examined for a display of gravitropism. Sixty one percent of the 8-day old, dark-grown gametophytes grew upward with respect to gravity, and 10% grew downward (Fig. 2), which suggests that Ceratopteris richardii gametophytes display a tendency toward negative gravitropism. For a clearer demonstration of negative gravitropism, gametophytes were turned upside down one and two days before observation. These gametophytes changed their direction of growth from “upward” to “downward” following this rotation (Fig. 2), which further demonstrates that C. richardii gametophytes display negative gravitropism.

Figure 2 shows results from gametophytes with the dark germinator 1 (dkg1) mutant allele, which enables spores to germinate in complete darkness (Scott and Hickok, 1991; Kamachi et al., 2004). Interestingly, 89% of these gametophytes grew upward, and only 1% grew downward. Thus, these mutants showed an enhancement of negative gravitropism compared with the

![Fig. 2. Percentages of dark-grown Ceratopteris richardii gametophytes that grew upward and downward directions in ber1 mutants (1, 2, 3) and dkg1 ber1 mutants (4, 5). Gametophytes grown on agar medium placed horizontally (1 and 4); gametophytes turned upside down one day before the observation (2); gametophytes turned upside down two days before the observation (3 and 5). Values represent the means evaluated from three separate experiments. In each experiment 50–100 gametophytes were observed. Bars are standard errors.](image-url)
her1 mutants. These results imply that white light, which is required to induce spore germination, may inhibit the subsequent gravitropism of developing gametophytes.

To confirm this hypothesis, white-light irradiation effects on gravitropism were examined using her1 gametophytes (Fig. 3). When the length of irradiation time was changed from 18 h to 48 h, the negative gravitropic response weakened. Seventy-four percent of gametophytes grew upward when the irradiation time was 18 h, as opposed to 48% when irradiation time was extended to 48 h. On the other hand, the percentages of gametophytes that grew downward and horizontally increased to 14 and 35% from 4 and 22%, respectively, when the length of irradiation time was changed from 18 h to 48 h. Thus, the white light irradiation during the initial developmental steps in spore germination inhibited negative gravitropism in Ceratopteris richardii gametophytes.

DISCUSSION

This research was conducted to determine whether gravity affects the directional growth of dark-grown gametophytes of Ceratopteris richardii. Gametophytes showed negative gravitropism similar to that as seen in most seedlings of vascular plants, caulonema of the moss Physcomitrella patens.

![Graph showing the effect of white-light irradiation on gravitropism in Ceratopteris richardii gametophytes.](image)

Fig. 3. White-light irradiation effects on negative gravitropism in Ceratopteris richardii gametophytes. The her1 spores were irradiated by white light for the designated times to induce spore germination, then germinated and grown in the dark. Percentages of gametophytes that grew upward (open circles), downward (closed circles) and horizontally (closed triangle) were determined from the 9-d-old gametophytes. Values represent the means evaluated from five separate experiments. In each experiment 50–100 gametophytes were observed. Bars are standard errors.
Gravitropism in plants occurs in three temporal stages: gravity perception, signal transduction, and organ response (Kumar et al., 2008). The detailed mechanisms of gravity perception have been unveiled mostly in vascular plants. In Arabidopsis thaliana (L.) Heynh. amyloplast movement along the gravity vector within gravity-sensing cells is the most likely trigger of a subsequent gravitropic response (reviewed in Morita and Tasaka, 2004). In contrast, no data are available to explain how Ceratopteris richardii gametophytes might sense the direction of gravity. Amyloplasts would not seem to be involved in gravity perception in C. richardii gametophytes because no starch-accumulating amyloplasts were found in dark-grown gametophyte cells following I₂-KI staining (data not shown). This suggests the involvement of some other statolith in triggering the gravitropic response in C. richardii gametophytes.

Edwards and Roux (1994) found that germinating spores of Ceratopteris richardii could sense the direction of gravity because gravity directed the nuclear migration in the germinating spores, as well as the initial direction of growth of the primary rhizoid. They detected a calcium flux in the germinating spores as the earliest gravity-directed event (Chatterjee et al. 2000), suggesting that calcium channels and pumps may be involved in the primary gravity perception mechanism in C. richardii spores. Recently, Salmi et al. (2011) proposed that the gravity-directed calcium current is regulated primarily by the activation of mechanosensitive calcium channels at the bottom of the spore, based on data obtained from a silicon microfabricated sensor array. Thus, the nuclear migration and the following calcium flux might be important in the gravity perception mechanism in C. richardii gametophytes.

As shown in Figure 3, the white-light irradiation that is required to induce spore germination weakened the negative gravitropism in herlf gametophytes, indicating that light irradiation on spores influences the later negative gravitropism of dark-grown gametophytes. In fact, the dark-grown gametophytes with the dkg1 mutant allele showed distinct negative gravitropism as compared with the gametophytes without the dkg1 allele (Fig. 2). The dkg1 mutants were shown to be constitutively active in several photomorphogenic responses mediated by phytochrome (a red and far-red light photoreceptor) through the gametophytic phase (Kamachi et al., 2004), in addition to the dark-germinating property. Considering these characteristics of the dkg1 mutants, phytochrome may not be responsible for the inhibitory effect of white light on subsequent negative gravitropism. In preliminary experiments, blue- and green-light, but not red light, affected the inhibition of negative gravitropism (Adachi and Kamachi, unpublished data).

The gravitropic growth-orientation of the seedlings of flowering plants is also inhibited by light (Correll and Kiss, 2002). In contrast to C. richardii gametophytes, however, phytochrome is responsible for the inhibition of gravitropism in Arabidopsis thaliana (Poppe et al. 1996; Lariguet and Fankhauser, 2004), where phytochrome is found to promote the conversion of amyloplasts to other forms of plastids in the endodermis, causing cessation of growth.
of hypocotyl gravitropism (Kim et al., 2011). Thus, the mechanisms involved in the light-induced inhibition of negative gravitropism in *C. richardii* gametophytes are likely to be different than those operating in *A. thaliana* seedlings. Further analyses are required to determine how the negative gravitropism of the gametophytes is inhibited by light and to identify the gravity-sensing mechanisms of *C. richardii* gametophytes.

ACKNOWLEDGMENTS

A part of this research was supported by Grants-in-Aid for Scientific Research, MEXT (No. 21657011).

LITERATURE CITED

Hoson, T., S. Matsumoto, K. Soga and K. Wakabayashi. 2010. Cortical microtubules are responsible for gravity resistance in plants. Plant Signal. and Behav. 5:752–754.

Antimicrobial and Modulatory Activity of Ethanol Extract of the Leaves from *Lygodium venustum* SW.

Universidade Regional do Cariri – URCA, Crato-CE, Brasil. Rua Cel. Antonio Luis 1161, Pimenta, 63105-000

ABSTRACT.—The evolution of microorganism defense systems has led to intensive searches for new drugs extracted from various natural products to fight microbial infections. This study evaluated the antibacterial and antifungal activity of *Lygodium venustum*, a climbing fern. A phytochemical screening was performed using ethanol extract from leaves of *L. venustum* (EELV), detecting the presence of phenols, tannins, flavonoids and alkaloids. The test of Minimal Inhibitory Concentration (MIC) against *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Candida albicans*, *C. krusei* and *C. tropicalis* was evaluated using the microdilution method, resulting in inhibitory concentrations ≥ 1024 μg/mL. Using a subinhibitory concentration of 128 μg/mL of EELV, the modulatory potential of the extract was tested against multidrug-resistant clinical isolates, resulting in synergism when combined with Gentamicin and actually altering the phenotype of *S. aureus* from sensitive to resistant. The extract also increased the effect of the kanamycin against *S. aureus*. This was the first report of modulatory antibiotic activity by a member of *Lygodium*.

KEY WORDS.—*Lygodium venustum*, microdilution, antimicrobial, modulator

Microbial infectious diseases have prompted the development of studies to understand their drug resistance mechanisms and the creation of drugs to avoid these defenses. Infection by *Staphylococcus aureus* is among the most common problems in hospitals due to its resistance against several antibiotics. *Pseudomonas aeruginosa* is the cause of nosocomial infections, particularly in people with cystic fibrosis. *Escherichia coli* is commonly found in the intestinal tract, but certain strains have been closely linked to serious urinary tract infections and diarrhea (Tortora et al., 2008). *Klebsiella pneumonia*, although confined to the normal flora, has emerged as an important hospital pathogen capable of causing severe morbidity and mortality in pediatric patients (Pfaller et al., 1998). Strains of *Candida* have concerned the medical community due to their role in high-morbidity and mortality infections.

*Corresponding author: Laboratório de Microbiologia e Biologia Molecular, Departamento de Química Biológica, Universidade Regional do Cariri – URCA, Crato-CE, Brasil. Rua Cel. Antonio Luis 1161, Pimenta, 63105-000. Phone: +55(88)31021212; Fax +55(88) 31021291. E-mail: flavianamoraisb@yahoo.com.br
particularly in immunocompromised patients (Richardson and Lass-Florl, 2008; Coutinho, 2009).

Through natural selection plants have developed several mechanisms against parasitism and herbivory. The production of defensive chemical compounds, such as secondary metabolites, indicates evolutionary adaptive responses from the pressure caused by these ecological relationships (Rhodes, 1994). Products derived from plants that feature antimicrobial properties or the ability to improve the antimicrobial potential of existing drugs play an important role in battling infectious diseases (Coutinho et al., 2009). They can serve as alternative therapeutic agents with the ability to directly counter natural microbial resistance to drugs.

Lygodium venustum is a fern with a pantropical distribution used as a bioindicator of degraded environments (Mehltreter, 2006). This fern is used as a medicinal plant in Latin America due to its antifungal, trichomonacidal, antidiarrheal, anti-inflammatory and analgesic activity (Duke and Ottesen, 2009; Argueta et al., 1994). It is used in the Peruvian Amazon as an adaptogen and as an ingredient of the sacred beverage "ayahuasca" (Rivier and Lidgren, 1972). Few studies have reported on the bioactivity of *L. venustum* in preclinical studies (Alanis et al., 2005; Calzada et al., 2007; Calzada et al., 2010), as is true in others ferns (Xavier, 2007).

In this work, a phytochemical screening was performed on the ethanol extract from leaves of *L. venustum*; its antimicrobial activity was assayed against bacterial and fungal strains, as well the modulatory potential against aminoglycosides and antifungal drugs.

Material and Methods

Plant Material

Leaves of *L. venustum* were collected in the city of Crato, Ceará, Brazil. The plant was identified by Dr. Antonio Álamo Feitosa Saraiva and voucher specimens were deposited at the Herbarium Caririense Dárdano de Andrade-Lima of the Regional University of Cariri – URCA, under number 5569 HCDAL.

Preparation of Ethanol Extract from Leaves of *L. venustum* (EELV)

The leaves were partially milled and 211.18 g of powdered material was extracted by maceration using 1 L of 95% ethanol as solvent at room temperature. The mixture was allowed to stand for 72 h at room temperature. The extract was then filtered and concentrated under vacuum in a rotary evaporator at 60°C and 760 mm/Hg, yielding 103.9 g (Brasileiro et al., 2006).

Phytochemical characteristics

The phytochemical assays were used for the qualitative analysis of the presence of secondary metabolites. The detection tests to evaluate the presence
of heterosides, saponins, phenols, tannins, flavonoids, steroids, triterpenes, coumarins, quinones, organic acids and alkaloids were performed according to the method described by Matos (2009). The tests are based on the visual observation of color modifications and formation of precipitate after the addition of specific reagents.

Microbial strains

The bacteria used in the Minimal Inhibitory Concentration (MIC) test were the standard strains of *E. coli* ATCC25923, *S. aureus* ATCC10536, *P. aeruginosa* ATCC15442 and *K. pneumonia* ATCC4362. The antifungal assays used standard strains of *Candida albicans* ATCC40006, *C. krusei* ATCC2538 and *C. tropicalis* ATCC40042. To evaluate the modulatory activity of the extract, the following multi-resistant bacterial strains were used, isolated from clinical environments: *P. aeruginosa* 03, *E. coli* 27 and *S. aureus* 358, with the resistance profile demonstrated in Table 1 and the same fungal strains used in the MIC test. All strains were obtained from the Laboratory of Clinical Mycology – UFPB.

Drugs

The drugs used in the tests were the aminoglycosides kanamycin, amikacin, neomycin and gentamicin, and antifungals mebendazole, amphotericin B, nystatin and benzoyl metronidazole (Sigma Co., St. Louis, USA). All drugs were diluted in sterile water.

Minimal Inhibitory Concentration

Broth microdilution was the method used. The EELV solution was dissolved using DMSO and diluted to 1024 μg/mL using sterile distilled water. The bacterial inoculum was diluted using BHI to a final concentration of 10^5 CFU/mL. A total of 100 μL of each inoculum was distributed in each well of a microtiter plate with 96 wells, and then submitted to a twofold serial dilution.
MORAIS-BRAGA ET AL.: ANTIMICROBIAL ACTIVITY OF *LYGODIUM VENUSTUM* 157

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

1 - Phenols; 2 - Tannin pyrogallates; 3 - Tannin Phlobaphenes; 4 - Anthocyanidins; 5 - Anthocyanins; 6 - Flavones; 7 - Flavonols; 8 - Xanthones; 9 - Chalcones; 10 - Aurones; 11 - Flavonol; 12 - Leucoanthocyanidins; 13 - Catechins; 14 - Flavonones; 15 - Alkaloids; (+) presence; (−) absence.

using 100 µL of the extract, with concentrations ranging between 8 and 512 µg/mL. The plates were incubated for 24 hours at 35 °C (Javadpour et al., 1996). Bacterial MIC was determined using resazurin, while the MIC of fungi was determined by turbidity. The MIC was defined as the lowest concentration where no growth can be observed, according to NCCLS (2008).

Drug Modulation Test

To observe whether the extract would alter the action of antimicrobial drugs against the tested strain, the method proposed by Coutinho et al. (2008) was used. The EELV was tested at a sub-inhibitory concentration (MIC/8 = 128 µg/mL). A 100 µL sample of a solution containing BHI, the microbial inoculums and extract were placed in each well. After this, 100 µL of the antimicrobial drug was mixed with the first well, following the twofold dilution. Concentrations of aminoglycosides and antifungals ranged between 2.44 and 2500 µg/mL and 2 to 512 µg/mL, respectively.

RESULTS

The phytochemical characterization showed the presence of phenols, tannins, flavonoids and alkaloids, as shown in Table 2.

The antibacterial and antifungal assays of EELV did not demonstrate clinically relevant results, with MICs ≥1024 µg/mL. However, when the modifying activity of EELV against aminoglycosides was evaluated, the Gram-negative *E. coli* 27 and Gram-positive *S. aureus* 358 strains showed synergistic activity when combined with gentamicin and kanamycin (Table 3). The combination of the extract with antifungals did not show any modulatory activity against strains of *Candida*.

DISCUSSION

Several plants used in the religious beverage “ayahuasca”, such as *L. venustum*, contain alkaloids (Rivier and Lidgren, 1972). This fact is corroborated by the results of our phytochemical screening. Other species from the genus *Lygodium* have been the subjects of more detailed chemical studies, including the isolation of some compounds (Zhang et al., 2005;
Kurumatani et al., 2001; Achari et al., 1986). However, this is the first work to focus on the chemical composition of L. venustum.

The lack of the antibiotic activity of L. venustum against strains of E. coli was verified in another report (Alanis et al., 2005). The results demonstrate that the extracts were not efficient inhibitors of bacterial growth, as their inhibition percentages were lower than 50%. A relevant note regarding this research is the value of the extract concentration used in the test, 8 mg, which is considered high for clinical applications (Houghton et al., 2007), as demonstrated in our work. Additionally, it is important to note that the microdilution method used in present study is currently the preferred technique to evaluate antimicrobial activity, compared to other methodologies using agar diffusion (Greger and Hadacek, 2000).

The methanol extracts of other plants from the genus Lygodium such as Lygodium japonicum (Thumb.) SW. was tested against strains of P. aeruginosa, S. aureus, E. coli and C. albicans using the disk diffusion method, impregnated with 40 µg of dried plant material/disk, but no bioactivity was demonstrated (Taylor et al., 1995). Our results corroborate those obtained in this work by Taylor et al. (1995).

Compared with the isolated action of drugs, EELV increased the antibiotic activity of amikacin against S. aureus. When associated with gentamicin, it demonstrated a very promising modulatory activity against E. coli and S. aureus, causing a reversal of the resistant phenotype of this strain to sensitive according to the classification of NCCLS (2005). The observed bioactivity of the extract in combination with the antibiotics may indicate that secondary metabolites such as tannins, flavonoids and alkaloids—all secondary metabolites with well-known antimicrobial activity and found in the EELV—could be acting in association with the assayed drugs, enhancing the activity of these drugs at lower concentrations (Scalbert 1991; Bylka et al., 2004; Zongo et al., 2009).

This is the first report on the modulatory activity against aminoglycosides by a fern. This activity indicates the possibility of development of new drugs derived from the association between natural products isolated from L. venustum with antibiotics, to be used in antibiotic therapy against multi-drug resistant bacteria, as well as prevent the emergence of drug resistant bacteria.
LITERATURE CITED

A New Species and a New Hybrid in the Grammitid Fern Genus *Stenogrammitis* (Polypodiaceae)

PAULO H. LABIAK
Universidade Federal do Paraná, Departamento de Botânica, Caixa Postal 19031, 81531-980, Curitiba-PR, Brazil, e-mail: plabiak@ufpr.br

ABSTRACT.—A new species and a new hybrid in the genus *Stenogrammitis* are here described, and descriptions, illustrations, and comments on the most similar species are provided. *Stenogrammitis brevipubens* is characterized by having hemidimorphic laminae, with the fertile portion narrower and less dissected than the sterile portion, and by its indument, which is composed of simple, hyaline, and 2-celled hairs that are appressed upon the petiole, rachis, and laminar tissue. The hybrid, *Stenogrammitis ×guatemalensis*, has hemidimorphic laminae and reddish, 1-furcate and 3-celled hairs that are spreading on the petiole and lamina. Based on the hybrid morphology, the putative parents are *S. prionodes* and *S. limula*.

KEY WORDS.—diversity, Guatemala, hybridization, Panama

Stenogrammitis Labiak is a pantropical genus recently segregated from *Lellingeria*. It comprises about 25 species, of which 12 are currently known from the Neotropics, six species from the continental Africa, four from Madagascar, and three that occur in some Islands of the Atlantic and Pacific Oceans (Labiak, 2011). The genus is characterized by its small size and narrow laminae (fronds generally less than 10 cm long and 0.5 cm wide), clathrate and iridescent rhizome scales that are glabrous throughout or with only one apical cilium, laminae with only one sorus per segment, and fertile veins that present the sclerenchyma visible beneath the sporangia.

Phylogenetic studies (Labiak *et al.*, 2010; Ranker *et al.*, 2010) showed that *Stenogrammitis* is most closely related to *Lellingeria* A. R. Sm. & R. C. Moran and *Melpomene* A. R. Sm. & R. C. Moran. *Lellingeria* differs by having broader laminae (usually more than 1 cm wide), rhizome scales that are usually ciliate, multiple sori per segment (except for *L. militaris* that has one), and fertile veins not visible beneath the sporangia (Labiak, 2011). *Melpomene* differs by presenting reddish setae on the fronds and also by rhizome scales with papillate apex (Lehnert, 2008; Labiak, 2011).

While studying the Neotropical species of *Stenogrammitis* I found a new species and a new hybrid that deserve recognition, which I describe as follow.

Stenogrammitis brevipubens Labiak, *sp. nov.* TYPE.—PANAMA. Prov. de Panamá: Cerro Jefe, cabecera del Río San Cristóbal, 900 m, 27 Dec 1986, I. Valdespino et al. 268 (holotype: US; isotype PMA). **Fig. 1. A–E**

Species *Stenogrammitidi myosuroidi* similaris, sed pilis brevibus, indivisis (vs. furcatis), hyalinis (vs. subrubris) differt.
Fig. 1. A–E. Stenogrammitis brevipubes (all from the holotype). A. Habit. B. Detail showing the hemidimorphic lamina. C. Detail of the segments from the sterile portion. D. Detail showing the hairs on the abaxial surface. E. Rhizome scale. F–K. Stenogrammitis × guatemalensis (all from the holotype). F. Habit. G. Detail of the segments. H. Petioles showing the hairs. I. Detail of the fertile portion of the lamina. J. Furcate hair from the laminar tissue. K. Rhizome scale.
Plants epipetric; rhizome short creeping, radially symmetrical, scaly, the scales lanceolate, castaneous, clathrate, 1.5–2 mm long, glabrous or with a single apical cell, the cells in the medial portion isodiametric to elongate (two or three times longer than wide); petiole 0.5–1 cm × 0.3 mm, dark brown, slightly pubescent, the hairs hyaline, soft, straight, 2-celled, simple, appressed; lamina 2–5 cm long, erect or slightly arcuate, linear, chartaceous, hemidimorphic; sterile portion deeply pinnatisect, abruptly reduced at the base, the basal segment decurrent, but not ending in a long and narrow wing to the petiole base, the segments at the medial portion 1.8–2 × 0.5–0.7 mm, linear, set at 70–80° to the rachis, symmetrical or slightly asymmetrical at the base, the apex acute to obtuse, laminar tissue and veins slightly pubescent on both sides, the hairs hyaline, 1 or 2-celled, simple, appressed, margin glabrous; fertile portion slightly crenulate, cut ca. 1/5 the way to the rachises, equal to or shorter than the sterile portion; rachis with dark sclerenchyma exposed abaxially, covered by the laminar tissue adaxially, flexuous, pubescent, the hairs hyaline, soft, 0.1 mm long, 2-celled, simple, appressed; sinuses as broad as the width of the segments; veins simple, not visible in the sterile portion, the dark sclerenchyma slightly exposed in the fertile portion beneath the sporangia, adaxially with linear, well-marked hydathodes; sori inframedial, rounded to oblong, indistinct, confluent when mature, extending beyond the bases of the sinuses and the rachis, slightly sunken, leaving an impression on the laminar upper surface; sporangia glabrous; spores green, trilete.

Etymology.—The specific epithet "brevipubens” refers to the short hairs that are present on the petiole, rachis, and laminar tissue, which are the main character that helps to distinguish this species from its congeners.

Distribution.—Stenogrammitis brevipubens is known by a single collection from Panama.

Stenogrammitis brevipubens is characterized by having a hemidimorphic lamina, flexuous rachis, and hyaline, simple, soft, straight, 1 or 2-celled, and appressed hairs present on the petiole, rachis and laminar tissue. Among the species with hemidimorphic lamina S. myosuroides (Sw.) Labiak and S. jamesonii (Hook.) Labiak are the most similar species, which can be distinguished by having straight (or only slightly flexuous) rachis and reddish, furcate, 3–4-celled, spreading hairs. Furthermore, S. brevipubens is an epipetric species, whereas S. myosuroides and S. jamesonii are usually epiphytes.

Another Neotropical species that also present simple and hyaline hairs on the petiole and rachis is S. pumila (Labiak) Labiak, from southeastern Brazil. It differs from S. brevipubens by its monomorphic lamina.

Conservation Status.—This species is currently known by a single collection, but with several individuals present in the type collection. This suggests that it might have a very narrow distribution but may form a dense population on the rocks of Cerro Jefe. Therefore, according to IUCN Red List Criteria (IUCN, 2001), it is assessed here as Data Deficient (DD).
Stenogrammitis × guatemalensis Labiak, hybrid nov. TYPE.—GUATEMALA.

Fig. 1. F-K

Hybrida inculta e Stenogrammitide prionode et S. limula genita. Plantae epiphyticae; rhizoma erectum, paleis brunneis, iridescentibus. Frondes fasciculatae; petioli setis brevibus, furcatis vestiti; laminae pro partibus sterilibus pinnatisectae; segmenta deltata vel deltato-linearia, nervis indivisis; sori lineares, impressi.

Plants epiphytic; rhizome erect, radial, scaly, the scales lanceolate, dark brown, iridescent, clathrate, 1-1.4 mm long, glabrous or with a single and furcate cilium at the apex, the cells in the medial portion isodiametric; petiole 0.5-1.5 cm × 0.3 mm, dark brown, slightly pubescent, the hairs spreading, reddish, rigid, straight, 3-celled, 1-furcate; lamina 10-15 cm long, arcuate, linear, chartaceous, slightly hemidimorphic; sterile portion deeply pinnatifid to pinnatisect, gradually reduced at the base, basal segment long-decurrent, ending in a long and narrow wing to the petiole base, the segments at the medial portion 1.5–2 × 1-1.5 mm, deltate to linear-deltate, set at 70–80° to the rachis, symmetrical to slightly asymmetrical at the base, the apex obtuse, laminar tissue, veins, and margins glabrous; fertile portion pinnatifid, cut ca. 1/3 the way to the rachises, about as long as the sterile portion, the segments deltate, obtuse; rachis on both sides with dark sclerenchyma exposed, pubescent, the hairs spreading, reddish, rigid and straight, 1-furcate, ca. 0.2 mm long; sinuses equal to or broader than the width of the segments; veins simple, not visible in the sterile portion, but with the dark sclerenchyma exposed in the fertile portion beneath the sporangia, adaxially with linear, well-marked hydathodes; sori inframedial, linear, distinct, not extending beyond the bases of the sinuses and the rachis, sunken, leaving an impression on the laminar upper surface; sporangia not well formed; spores not seen.

Etymology.—The epithet “guatemalensis” refers to the type locality where the hybrid was found: Guatemala.

Distribution.—*Stenogrammitis × guatemalensis* is known only from the type collection from Guatemala.

Stenogrammitis × guatemalensis is known by a single collection, which suggests a sporadic event of hybridization. Based on its intermediate morphology, the most probable parents are *Stenogrammitis limula* (H. Christ) Labiak and *S. prionodes* (Mickel & Beitel) Labiak, two of the commonest species of *Stenogrammitis* in Guatemala.

With *S. limula* it shares reddish, rigid, straight and 1-furcate hairs on the petiole and rachis, rhizome scales with isodiametric cells, and also linear and sunken sori that leave an impression on the adaxial surface of the lamina. It differs from *S. limula* by its slightly hemidimorphic lamina (vs. monomorphic), and longer rhizome scales (1–1.4 vs. 0.8–1.2), characters that are shared with *S. prionodes.*
Other than *Stenogrammitis limula* and *S. prionodes*, the only other species of *Stenogrammitis* known to Guatemala is *S. jamesonii* (Hook.) Labiak. Like *S. prionodes*, it also has a hemidimorphic lamina, and reddish and furcate hairs on the petiole and rachis. However, its fertile portion is shallowly crenulate, and the sori are conspicuously confluent when mature—characteristics that are not present in the hybrid. A summary of characters useful for distinguishing the species and hybrid of *Stenogrammitis* known from Guatemala is presented in Table 1.

Although hybridization is a common event among some groups of terrestrial ferns (e.g., *Anemia*, *Blechnum*, and *Dryopteris*), it seems to be very rare and occasional among epiphytic plants (Gómez, 1985). Records of hybrids among the Grammitid ferns are scarce in the literature and, as far as I know, only four cases have been reported so far (Parris, 1977; Parris, 1984; Labiak and Matos 2007; Christenhusz, 2009). Therefore, because it is an uncommon event among the Grammitid ferns, I consider it worthwhile to recognize this hybrid, even though it is represented by only a few individuals.

ACKNOWLEDGMENTS

This study was funded by a grant from the CNPq—Brazil (CNPq Proc. n° 301997/2010-1). I thank The New York Botanical Garden for providing herbarium and laboratory facilities, as well as the Curators of the following herbaria for loans: AAU, B, BM, BR, F, FR, GH, K, MAPR, MICH, MO, NY, P, PMA, S, SP, U, UC, US, and WU. I also thank Robbin Moran, John Mickel, Alejandra Vasco, and Michael Sundue for their help during my visit to NY. Diana Carneiro prepared the line drawings.

LITERATURE CITED

Diplazium fimbriatum (Athyriaceae), a New Species from Brazil

CLAUDINE M. MYNSEN
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro, RJ 22460-030, Brazil. e-mail: cmynssen@jbrj.gov.br

FERNANDO B. MATOS
The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, U.S.A. e-mail: fmatos@nybg.org

ABSTRACT.—A new species, Diplazium fimbriatum (Athyriaceae), is described and illustrated. It is endemic to the humid montane forests of eastern Brazil, a region known for its high level of endemism and species richness. A comparative table to distinguish it from similar species of Diplazium occurring in Brazil is provided.

KEY WORDS.—Athyrioid ferns, Atlantic Forest, Bahia, Espinhaço Mountains, Minas Gerais, taxonomy

The Athyriaceae comprises five genera and ca. 600 species (Christenhusz et al., 2011; Rothfels et al., 2012), the majority of which were placed in Woodsiaceae by Smith et al. (2006, 2008). Diplazium comprises approximately 400 species, with well over 100 in tropical America, where the highest diversity is concentrated in the Andean and Guyanan regional centers (Tryon, 1972). The present work is part of a revision of the genus Diplazium in Brazil, which has indicated the occurrence of 22 species in the country, most of these being widely distributed in the coastal Atlantic Forest (Mynssen et al., 2009), including eight endemics (Mynssen, 2010). During this revision more than 30 localities were visited, including the states of Bahia, Espírito Santo, Minas Gerais, Paraná, and Rio de Janeiro. Furthermore, specimens from 45 herbaria were examined, including B, BM, BHCB, CEPEC, CESJ, HB, HBR, INPA, IPA, K, MBM, MBML, MG, NY, OUP, P, R, RB, S, SP, SPF, UPCB, and US (Thiers, 2009).

The species of Diplazium are predominantly terrestrial, rarely epipetric, and can be distinguished by the following characters: stems usually ascending to erect, rarely long-creeping, bearing scales at the apex; scales usually non-clathrate, brown to blackish-brown, margin entire or toothed; leaves monomorphic, rarely dimorphic; petioles with two crescent-shaped vascular bundles at the base (in cross section), these uniting distally; lamina simple to 1–4-pinnate-pinnatifid, glabrous or pubescent; veins generally free (simple or furcated), or anastomosing without included veinlets; sori elongate, elliptic to linear, borne on both sides of the vein (diplazioid) or on only one side; indusia generally present, rarely absent (among Brazilian species, indusia are absent, or nearly so, only in D. lindbergii), paraphyses absent; spores ellipsoidal, monolete, with wing-like folds, the surface smooth, reticulate or papillate to echinate between the folds.

Diplazium fimbriatum D. mutilo Kunze multis notis simile a quo margine longo-fimbriato indusii et praesentia gemmarum in rachidi recedit. *Diplazium mutilum* a *D. fimbriatum* etiam margine integro vel dentato indusii sui et gemmis in rachidi absentibus differt.

Etymology.—From Latin “fimbriatus,” fringed; referring to the fimbriate margins of the indusia.

Plants terrestrial; *stem* 20–40 × 1–1.5 cm, ascending to erect, bearing scales at the apex; *scales* 1.2–2 × 0.1–0.3 cm, concolorous, brown, lanceolate, basifixed, the apices acuminate, sinuate, margins entire to dentate; *leaves* to 150–180 cm long, erect to arched, fasciculate; *petioles* 55–80 × 0.8–1 cm, brown, tomentose, with septate hairs 0.1–0.3 mm, and scales like those of the stems; *lamina* 94–149 × 40–65 cm, chartaceous, 1-pinnate-pinnatifid, lanceolate, gradually tapering to a pinnatifid apex, with proliferous buds in the axils of distal pinnae; *rachises* with septate hairs 0.2–0.4 mm long in adaxial grooves, linear scales 1.5–2.5 × 0.1–0.2 mm and lanceolate scales 1.5–4 × 0.5–0.8 mm abaxially and adaxially; *pinnae* 28–37 × 3–5.5 cm, stalked to 0.4–1.2 cm, 6–14 pairs per lamina, oblong-ovate to deltate, incised 2/3 or less to the costae, bases truncate or round, apices acuminate, margins crenate to slightly serrate, without differentiated marginal cells; *costae* grooved adaxially, with vertical laminar wings 0.2–0.5 mm wide; *veins* free, pinnate, simple or furcate; *indument* adaxially restricted to costal grooves, the hairs similar to those on the rachis, abaxial side of the veins with linear scales, 0.8–1 × ca. 0.1 mm, laminar tissue between veins glabrous on both sides of the lamina; *sori* 5–8 × 0.3 mm, oblong, diplazioid or not; *indusia* commonly persistent, membranaceous, brownish, margins fimbriate, the fimbriae 0.4–0.6 mm long; *spores* brown, ellipsoidal, monolete.

Distribution and Ecology.—Restricted to the humid montane forests of southern Bahia and Minas Gerais, Brazil, where it grows in deep shade and along stream banks, at 250–1200 m. *Diplazium fimbriatum* occasionally shares its habitat with *D. celtidifolium* Kunze, *D. lindbergii* (Mett.) Christ, and *D. mutilum* Kunze, which could favor hybridization within the genus.

Conservation Status.—Vulnerable (VU), under criteria D2 (IUCN, 2010). Based on the available collections and recent expeditions carried out by the authors throughout the Brazilian Atlantic Forest, *Diplazium fimbriatum* has a very restricted distribution, being known from only six localities in eastern Brazil (Fig. 2). Although most of these populations are within legally protected areas (i.e., national parks and biological reserves), human activities such as logging and replacement of forests by cattle ranches and plantations (cocoa, coffee and sugarcane) continue to be serious threats. Particularly alarming is the rapid deforestation of Serra do Corcovado, in the municipality of Almadina, a
Fig. 1. Diplazium fimbriatum A. Lamina (C. M. Mynsien & F. B. Matos 1167). B. Proximal pinnae. C. Abaxial side of median segment, showing sori and indusial margin. D. Lanceolate scale of the lamina. E. Septate hair of the lamina (F. B. Matos et al, 236).
Fig. 2. Distribution map of *Diplazium fimbriatum*, with protected areas indicated.
locality that is becoming well known for increasing records of rare species of ferns (e.g., *Adiantum diphyllum* (Fée) Maxon, *Asplenium truncorum* F. B. Matos, Labiak & L. Sylvestre, and *Megalastrum indusiatum* R. C. Moran, J. Prado & Labiak) and angiosperms (A.M. Amorim, pers. comm.).

Minas Gerais: Conceição do Mato Dentro, Parque Natural do Ribeirão do Campo, 1 Oct 2002, R. C. Mota et al. 1540 (BHCB); Idem, mata de galeria do córrego da mina, 19°06'19"S, 43°34'04"W, 1175m, 30 May 2005, A. Salino et al. 8748 (BHCB).

Diplazium costale (Sw.) C. Presl var. *robustum* (Sodiro) Stolze, endemic to Ecuador (Stolze et al. 1994), resembles *D. fimbriatum* in blade dissection, leaf length, and presence of proliferous buds on the axils of distal pinnae. Nevertheless, it differs from *D. fimbriatum* by abundant costal scales and the robust falcate sori closer to the costae with entire indusia (vs. delicate oblong sori with fimbriate indusia). Fée (1869) applied the name *D. costale* to two specimens collected in Brazil; however, a careful examination of these specimens shows that *Blanchet* 535 (NY) refers to *D. celtidifolium* Kunze, whereas *D. rostratum* Fée would be the correct name for *Miers 164* (K).

Also similar is *Diplazium macrophyllum* Desv. (Venezuela, Colombia, Ecuador, Peru, and Bolivia), which differs by the broader pinnae (9–22 vs. 3–5.5 cm), and the shape of the apices of ultimate segments, which are attenuate or acuminate (vs. obtuse to acute in *D. fimbriatum*). Furthermore, the veins of *D. macrophyllum* are sparsely provided abaxially with lanceolate to deltate scales (1–1.5 × 0.3–0.5 mm), whereas in *D. fimbriatum* these scales are filiform to linear.

Several other species that occur in Brazil are also probably related to the new species (Table 1). *Diplazium celtidifolium* Kunze has similar linear and lanceolate scales on the rachises, and also has buds on the axils of distal pinnae, but differs from *D. fimbriatum* by the shape of the pinnae (oblong to lanceolate vs. oblong-ovate to deltate), and indusia margins (entire to dentate vs. fimbriate). Moreover, the pinnae of *D. celtidifolium* are usually less incised, often entire. From *D. mutilum* Kunze, a Brazilian endemic, *D. fimbriatum* differs by the presence of proliferous buds and fimbriate indusia (vs. entire to
dentate in *D. mutilum*). Another species in Brazil, *D. lindbergii* (Mett.) Christ, has similar habit, blade dissection and leaf length, but can be easily distinguished by indusia absent or vestigial and lack of proliferous buds on the lamina.

ACKNOWLEDGMENTS

We thank Dr. André M. Amorim (CEPEC, UESC), Dr. Vitor O. Becker (RPPN Serra Bonita), and staff of the CEPEC herbarium for supporting field work in southern Bahia, Brazil. Thanks also to Dr. William A. Rodrigues (UFPR) for the Latin diagnosis, Tainain Messina and Nina P. Monteiro (CNCFlora) for drafting the map, and Maria Alice Rezende for preparing the illustrations. Special thanks to Dr. Lana S. Sylvestre for supervising and suggestions. Dr. Robbin C. Moran and Dr. James L. Luteyn for helpful comments on the manuscript. This research was largely funded by CAPES and the Kew Latin America Research Fellowship Programme - France Fellowship in Neotropical Botany (2007).

LITERATURE CITED

<table>
<thead>
<tr>
<th>Species</th>
<th>Proliferous buds</th>
<th>Proximal pinnae</th>
<th>Pinnae indument</th>
<th>Indusia</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. fimbriatum</td>
<td>Present (axils of distal pinnae)</td>
<td>oblong to ovate</td>
<td>sepalate hairs plus linear and lanceolate scales</td>
<td>long-fimbriate catenate</td>
</tr>
<tr>
<td>D. mutilum</td>
<td>Absent</td>
<td>oblong</td>
<td>sepalate hairs and filiform scales</td>
<td>entire to dentate</td>
</tr>
<tr>
<td>D. celtidifolium</td>
<td>Present or not (axils of distal pinnae)</td>
<td>oblong to lanceolate</td>
<td>sepalate hairs and linear scales</td>
<td>entire to dentate</td>
</tr>
<tr>
<td>D. lindbergii</td>
<td>Absent</td>
<td>oblong</td>
<td>sepalate hairs and filiform scales</td>
<td>absent or vestigial</td>
</tr>
</tbody>
</table>

Isoetes mourabaptistae, a New Species from Southern Brazil

JOVANI B. PEREIRA
Universidade Federal do Paraná, Depto. de Botânica, C.P. 19031, 81531-980, Curitiba, PR, Brazil, e-mail: jovanibio@gmail.com

PAULO G. WINDISCH
Universidade Federal do Rio Grande do Sul, Depto. de Botânica, C.P. 43433, 91501-970, Porto Alegre, RS, Brazil, e-mail: pteridos@gmail.com

MARIA L. LORSCHETTER
Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Depto. de Botânica, C.P. 9500, 91540-000, Porto Alegre, RS, Brazil, e-mail: mlorsch@uol.com.br

PAULO H. LABIAK*
Universidade Federal do Paraná, Depto. de Botânica, C.P. 19031, 81531-980, Curitiba, PR, Brazil, e-mail: plabiak@ufpr.br

A B S T R A C T.—Isoetes mourabaptistae, a new species from southern Brazil, is described, illustrated, and compared to the most similar species. This new species is apparently restricted to southern Brazil, and is characterized by crista to irregularly reticulate megaspores and microechinate microspores. It is an aquatic plant, occurring among submerged rocks along rivers, at about 900–1100 m in elevation.

K E Y W O R D S.—Isoetaceae, taxonomy, lycophytes, diversity, aquatic plants

The genus Isoetes L. comprises approximately 350 species (Hickey et al., 2003), most of them occurring as aquatic plants in lakes and streams, but also as terrestrials on permanent or seasonally wet soils. The genus is widely distributed around the world, but many of its species tend to have very narrow distributions (Hickey, 1986; Hickey et al., 2003; Small and Hickey, 2001; Luebke and Budke, 2003; Choi et al., 2008).

Hickey (1990) considered South America to be a center of both morphological and taxonomic diversity for Isoetes. However, this is still one of the less known regions, and published estimates of the diversity of Isoetes in South America vary considerably. Two of the most important contributions to South American Isoetes, provided by Fucks-Eckert (1982) and Hickey (1985), suggest, respectively, between 75 and 47 species for this region. Undoubtedly much work is still needed to assess the actual diversity in South America. In Brazil particularly, Isoetes is one of the less known groups of lycophytes, and most of the species are represented by a very limited number of collections. Prado and Sylvestre (2010) recorded 14 species for Brazil (12 endemics), most of them

*Corresponding author
distributed along the coastal mountains of the southeastern and southern regions.

A study on the spore morphology of ferns and lycophytes of Rio Grande do Sul (Lorscheitter et al., 2009), and additional fieldwork conducted by the authors, has identified the presence of a new species of Isoetes that we describe herein.

Plants submerged, growing among rocks in streams, less than 15 cm tall. Corm erect, bilobed, 3–10 mm wide. Roots synchronous, dichotomous. Microphylls 10–35, ascending, linear, chartaceous, 6–11 cm long, 4–6 mm wide at the base and 1–2.5 mm wide in the medial portion, base of the microphylls alate, the alae 1.4–2.3 cm long, 0.5–0.8 mm wide (above the sporangium), extending 20–25% the length of the microphyl. castaneous, apices often truncate. Subula olive green, ascending, semiterete, the apex attenuate. Scales absent. Labium absent. Ligula deltate-lanceolate, membranaceous, 2.2–2.5 mm long and 1.4–1.8 mm wide. Velum incomplete, covering 50–75% of the sporangium width, and 25–50% of the sporangium length. Sporangium basal, elliptic, hyaline, 3.1–3.4 mm long, 1.9–2.4 mm wide. Megaspores whitish, trilet, globose in equatorial view, globose to subtriangular in proximal view, 558–736 (x = 669) μm wide, irregularly reticulate to densely cristate distally, irregularly reticulate proximally. Microspores gray, monolette, elliptic, 30–38 (x = 34) μm long, 23–28 (x = 25) μm wide, perispore microechinate.

ETYMOLOGY.—The specific epithet honors Dr. Luis Rios de Moura Baptista, botanist from the Federal University in Porto Alegre, Rio Grande do Sul.

DISTRIBUTION AND ECOLOGY.—Isoetes mourabaptistae is known from only two collections: one from São Francisco de Paula, and the other from São José dos Ausentes, both in the northeastern part of Rio Grande do Sul. It was found
Fig. 1. A–B. A. Habit of *Isoetes mourabaptistae*. B. Velum (the arrow indicates the edge of the velum with the fenestra below). Scale bars: A = 2 cm and B = 1 mm. (All from the Holotype, P. G. Windisch 10056, PACA).

growing submerged, on rocks in shallow, clear waters, at altitudes of about 900–1100 m.

Taxonomic Notes.—According to Hickey *et al.* (2009), in the southern part of South America there is a group of species with reticulate megaspores that is very complex taxonomically. This group includes species such as *I. brasiliensis* H. P. Fuchs, *I. ekmanii* U. Weber, *I. fuscomarginata* H. P. Fuchs,
I. martii A. Br., *I. organensis* U. Weber, *I. ramboi* Herter, *I. smithii* H. P. Fuchs, *I. sehnmii* H. P. Fuchs, and *I. spannagelii* H. P. Fuchs. Because *Isoetes mourabaptistae* has megaspores that are irregularly reticulate, we believe that it may belong to this group. It can be distinguished from most of those species, however, by its larger megaspores (558–736 μm in diameter), and by its
microechinate microspores. In contrast, the megaspores of most of the species from southern Brazil are usually less than 400 μm in diameter, and the microspores always have smooth outer coatings.

In the size of the microphylls (up to 11 cm long) and habit (Fig. 1 A), Isoetes mourabaptistae resembles I. sehnmii H. P. Fuchs and I. spannagelii H. P. Fuchs. However, the megaspores of I. sehnmii are much smaller (332–480
(−554) μm diam.) and the microspores are smooth (Figs. 2E and 3E). In *I. spannagellii* the megaspores are 406–562(−603) μm in diameter and distinctly and consistently reticulate. The microspores are also smooth (Figs. 2F and 3F).

Hans Peter Fucks-Eckert labeled a collection made by Luis Rios Moura-Baptista as *'Isoetes batistae'* (Moura-Baptista 7719, PACA), and also cited this name on pages 237 and 256 of his work published in 1982 (Fucks-Eckert, 1982). However, Fucks-Eckert never validly published this new name (therefore a *nomen nudum*). The specimen at the PACA Herbarium is very depauperate, with only fragments of the microphylls. Even though it was collected in the same river, and likely represents the species described here, we cannot be sure about its identity given the absence of the characters that distinguish this species from its congeners.

Conservation Status.—*Isoetes mourabaptistae* is currently known from only two collections, from two different rivers in southern Brazil. This suggests that it is locally rare and has a narrow distribution, therefore deserving special attention relative to its conservation status. However, based on our current knowledge of its population size and geographic distribution, and according to IUCN Red List Criteria (IUCN, 2001), it is assessed here as Data Deficient (DD).

Acknowledgements

We thank the "Centro de Microscopia Eletrônica da UFPR" and Priscila Izabel Tremarin for their help with the SEM images. We also thank Dr. Thelma Veiga Ludwig and Dr. William Rodrigues for their valuable help in this work. This study is part of Jovani Souza's Master Dissertation, which was made possible through a fellowship from CAPES. Paulo Labiak, Paulo Windisch, and M. Luisa Lorscheitter are Research Grant recipients from the Brazilian Research Council (CNPq).

Literature Cited

Agravitropic Growth of the Early Leaves of Apogamous Sporophytes of *Dryopteris tyr rhena*.— *Dryopteris tyr rhena* Fraser-Jenk. & Reichst., a Western Mediterranean endemic, is a threatened species represented by a few populations in Spain, France, and Italy (Magrini and Scoppola, Inform. Bot. Ital. 42(2):595–597. 2010). The relict type of its distribution (rare and scattered with big gaps between different localities, mostly in crevices and caves) suggests that *D. tyr rhena* is an old species of the Tertiary flora of the Mediterranean mountains (Fraser-Jenkins et al., Fern Gaz. 11(2–3):177–198. 1975; Bernardello and Martini, *Felci e piante affini in Liguria e in Italia*. Le Mani-Microart’s Edizioni, Recco-Genova. 2004). It is an allotetraploid species (2n=164) originated by interspecific hybridization between the diploid species *D. oreades* Fomin (2n=82) and *D. pallida* (Bory) Maire & Petitm. (2n=82) with subsequent chromosomes doubling (Fraser-Jenkins et al., 1975).

This study on the in vitro development of apogamous sporophytes of *Dryopteris tyr rhena* (Magrini, *Plant Biosystems* 145(3):635–637. 2011; Magrini et al., *Studi Trent. Sci. Nat.* 90:165–169. 2012) was undertaken in summer 2008 at the Tuscia Germplasm Bank of the Botanic Gardens of Viterbo (Italy) in order to learn about its reproductive biology, and for conservation purposes, to obtain information on the biological factors that may have contributed to the strong fragmentation of its distribution. Fresh spores were collected in September 2007 from a wild population of *D. tyr rhena* growing within the Cinque Terre National Park (Riomaggiore, La Spezia, Italy). Studies of gametophyte and sporophyte development were carried out according to the protocol of Menendez et al. (*Plant Cell Rep.* 25:85–91. 2006; Quintanilla and Escudero, *Ann. Bot.* 98:609–618. 2006; Magrini et al., 2012). All the spores were separated from sporangia using sieves with a mesh size of 71 μm, and then were soaked in Eppendorf tubes with 1.5 ml of distilled water for 24 h. After, they were surface sterilized for 3 min. in a 0.5% NaOCl solution, supplemented with a drop of Tween 20 to improve the efficiency of the sterilization. They were then rinsed three times with sterile distilled water and centrifuged at 6,000 rpm for 3 min. between rinses. The spores were sown with three replicates in sterile plastic Petri dishes (6 cm diameter) containing 15 ml of MS medium (Murashige and Skoog, *Physiol. Plant.* 15:473–497. 1962) (*PhytoTechnology Laboratories*® Shawnee Mission, KS, USA), supplemented with 0.7% agar (Plant tissue culture grade, *AppliChem*, Darmstadt, Germany) and a Nystatin solution (100 Uml⁻¹), which was added as a fungicide (*AppliChem*, Darmstadt, Germany). The cultures were maintained under cool-white fluorescent illumination (Osram Dulux L 36W/840 Lumilux, 2900 lm), a 12-h photoperiod, and a temperature of 20±1°C (Sheffield et al., Amer. Fern J. 91(4):179–186. 2001; Magrini et al., 2012). The dishes were examined daily for spore germination (defined as the first emergence of the rhizoid) and weekly for gametophyte growth and sporophyte development.
A low percentage (<5%) of the spores germinated after 36 days after sowing. All gametophytes were filamentous at the beginning and they followed a normal trend of development in the transition from protonema to the laminar-cordate phase: the first oblique division of the terminal cell of the germ filament started after the fourth longitudinal division (Raghavan, Developmental biology of fern gametophytes. Cambridge University Press. 1989), resulting in laminar heart-shaped gametophytes 15 days after germination. All the cordate gametophytes produced rhizoids in the ventral side and developed apogamous buds in the dorsal side, in the cushion area behind the apical notch (Fig. 1a), about 60–70 days after germination (Magrini et al., 2012). This same pattern has been previously recorded for D. affinis (Lowe) Fraser-Jenk. subsp. affinis (Menéndez et al., 2006). Sporophytes arose from these buds in a few days, with young pinnate fronds, which started to quickly grow, showing circinate vernation (Fig. 1b).

During the apogamous sporophyte development, an interesting phenomenon was noticed. In the beginning, the leaves grew upward, each diverging at an angle of about 100° from the previous one (Fig. 1c), as has been observed by
Duncan (Bot. Gaz., 105:202–211, 1943) for certain apogamous forms of D. affinis (Lowe) Fraser-Jenk. subsp. borreri (Newman) Fraser-Jenk. An anomalous growth was observed a few days later as the leaves showed an agravitropic response. They developed both upward and downward, growing also into the agar of the culture medium (Fig. 2). Other studies are testing the already known induction factors of apogamy, like the presence of sucrose in the culture medium, high light intensity, and the vertical growth of the gametophytes (Magrini et al., 2012). Their preliminary results led us to hypothesize that apogamy may have been induced by ethylene production during in vitro culture (Elmore and Whittier, Can. J. Bot. 53:375–381, 1975). In fact, the dishes were sealed with Parafilm, in order to reduce contamination, to prevent excessive water loss, and to reduce air exchange. Menéndez et al. (2006) showed how auxins play a stimulatory role during the induction and differentiation of apogamous embryo development in D. affinis. Van der Laan (1934) was the first to consider the possibility that ethylene acts on auxin in plants. Given its potential role in apogamy, it is possible that ethylene could also be influencing the normal gravitropic response. However, more experimental work is needed to study the influence of ethylene on tropisms and to clarify the effective cause of this agravitropic response.—SARA MAGRINI, Tuscia Germplasm Bank, Botanic Gardens of Viterbo, Tuscia University, largo dell'Università, Blocco C, 01100, Viterbo, Italy, e-mail: magrini@unitus.it, and ANNA SCOPPOLA, Department of Agriculture, Forestry, Nature, and Energy, Tuscia University, via S. Camillo de Lellis, 01100, Viterbo, Italy, e-mail: scoppola@unitus.it.
Cheilanthes feei T. Moore (Pteridaceae) and Dryopteris erythrosora (D.C. Eaton) Kunze (Dryopteridaceae) New for the Flora of North Carolina.—Recent field and herbarium work has added these two species to the spontaneous flora of the state of North Carolina, USA. Cheilanthes feei is native to the center of the continent; its core range extends from eastern Minnesota and Texas, south to northern Coahuila and Chihuahua, and west to southern Nevada and extreme southeastern British Columbia (Windham and Rabe, Cheilanthes. In: Flora of North America. Oxford University Press, New York. 1993; Mickel and Smith, The Pteridophytes of Mexico. The New York Botanical Garden Press, New York. 2004). From this core area, there are two reported disjunctions. The first, in central northern Kentucky (Reed. Amer. Fern J. 42:53–56. 1952.) is approximately 200 km east of the main range, and the second, along the New River in western Virginia (Wieboldt and Bentley, Amer. Fern J. 72:76–78. 1982.) is another 450 km to the east. In both cases, the species was found on limestone or dolomitic cliffs, its typical habitat.

Recent curatorial activities at the Duke University herbarium (DUKE) resulted in the discovery of this species as new for North Carolina. A single specimen was collected in 1930 by Hugo Blomquist in Durham County (some 200 km SE of the nearest station, in Virginia), but was misidentified as the more common Cheilanthes tomentosa Link. The Blomquist specimen is undoubtedly C. feei and not C. tomentosa, based on the absence of scales on the rachises and costae, and the glabrescent adaxial surfaces of the ultimate segments. Unfortunately, the label data describe the collection location merely as “Eno River, Durham, NC.” Given that Blomquist was based in Durham, and that his databased collections from June 1930 are all from North Carolina (including one from Durham County: www.herbarium.unc.edu/seflora; www.tropicos.org), it seems unlikely that this record is due to a labeling error. Subsequent searches by the authors and associates along the Eno River failed to discover any extant populations, but such may well still exist.

This record continues a noteworthy pattern of disjunction for western cheilanthoid ferns: in most cases where a predominantly western species has populations east of the Appalachian, the species involved is an apomictic triploid. Species fitting this pattern include Cheilanthes feei, C. eatonii Baker (C. castanea Maxon), C. alabamensis (Buckley) Kunze, and C. tomentosa. This pattern is also seen in the related genus Astrolepis, where two apomictic triploids (A. sinuata (Lagasca ex Swartz) D.M. Benham & Windham ssp. sinuata and A. integerrima (Hooker) D.M. Benham & Windham) have eastern disjunct populations far from their core western ranges (disjunct to Georgia and Alabama, respectively; Weakley, Flora of the Southern and Mid-Atlantic States. The University of North Carolina Herbarium, Chapel Hill, NC. 2011). This tendency for apomictic taxa to have long-distance geographic disjunctions is consistent with their breeding system. As asexuals, they need only a
single spore to land in a suitable habitat in order to potentially establish a new population. In contrast, many sexual cheilanthoid ferns appear unable to undergo intragametophytic selfing, and thus require two spores to establish and produce gametophytes in close enough proximity to permit cross-fertilization before a population can be established.

Like C. feei, Dryopteris erythrosora is an apomictic triploid. It is native to woodlands of eastern Asia but is common in the North American horticultural trade, where it is sold under the name Autumn Fern (Hoshizaki and Wilson, Amer. Fern J. 89:1–98. 1999; Hoshizaki and Moran, Fern Grower’s Manual. Timber Press, Portland, OR. 2001). In North America, it has been reported from Georgia (Weakley, 2011) and Arkansas (Simpson et al., Amer. Fern J. 98:111–112. 2008). We found it growing in a typical habitat—a disturbed suburban woodlot—in Durham County, North Carolina. It was uncommon, in the company of other native and nonnative taxa, without any indication of it (or anything else) having been planted on the site or in the vicinity (Fig. 1).

north of Sunset Ave, between Carolina Ave and Albany St. N36.02361 W78.92577 +/−8m. Elevation: 153 m. Two plants seen (but there were more earlier in the year; they presumably got washed away). Just above scour zone of small suburban creek, on disturbed, steep sandy banks, with Impatiens, Toxicodendron, Polystichum, Viola, Boehmeria, Vinca, other invasive shrubs, etc. Under Morus, Acer negundo, Fraxinus, etc., in weedy ridge through floodplain forest. 2010-August-08. C.J. Rothfels 3959, with S. Zylinski (DUKE 401869). Det’d C.J. Rothfels & E. Sigel, August 2010. ! C. Fraser-Jenkins (from photos), August 2010.

We thank Christopher Fraser-Jenkins for confirming the identification of the Dryopteris, Dylan Burge, Amanda Grusz, Beth Guy, Layne Huiet, Fay-Wei Li, and Lisa Pokory for their efforts in our as-yet unsuccessful attempts to locate extant North Carolina populations of Cheilanthes feei, and Jennifer Geiger (Editor) and two anonymous reviewers for improvements to the manuscript.—C. J. ROTHFELS, E. M. SIGEL, and M. D. WINDHAM, Department of Biology, Duke University, Durham, North Carolina.

The tropical Andean fern flora is - along with that of Southeast Asia and New Guinea - the richest worldwide. Despite (or perhaps because of) this, floristic treatments of Andean ferns are rare. Peru and Venezuela are the only countries with fully published fern floras, although these are now becoming outdated as fern taxonomy evolves and new species are recorded. For Ecuador and Colombia, only selected families have been treated so far in the series of national floras. In addition, there are a number local or regional floras and checklists. Bolivia, which harbors about 1200 known fern species, has so far had no floristic fern treatment. Now, Michel H. Nee and Michael Sundue have produced the first flora for part of the country, namely Amboró National Park and surrounding areas.

Amboró National Park is located on the “Andean elbow” where the Andes turn abruptly southwards and where the humid tropical Andes that extend from western Venezuela to central Bolivia meet the arid subtropical Andes that reach from here to northwestern Argentina. As a result of this position at a major biogeographical meeting point and because of its high diversity of habitats, Amboró is one of most diverse protected areas worldwide. Covering 442,500 hectares plus 195,000 hectares in a surrounding “Natural Area of Integrated Management”, Amboró ranges from 235 m to 3100 m elevation and includes vast tracts of evergreen rainforest as well as smaller areas of drier and seasonally deciduous forest types. So far, over 3000 species of vascular plants have been recorded from the park. Dr. Michael H. Nee from the New York Botanical Garden has been working intensively of the flora of this region for decades and is the driving force behind the preparation of the flora.

The first volume of the flora of Amboró, published in Spanish in 2011 by the Bolivian conservation NGO Fundación Amigos de la Naturaleza (FAN), covers all 429 species of ferns and lycophytes as well as 11 species of gymnosperms so far known from the park and adjacent areas. Because large parts of the national park, especially in the wet montane rainforests at 1000–2000 m which harbour the highest fern diversity are largely inaccessible and have not yet been explored botanically, there is no doubt that many more fern species actually occur in the park, probably in the order of 600–800 species. However, this is true for much of the Bolivian Andes where collecting activity is very localized and where new records are commonplace.

The fern treatment was prepared over several years by Dr. Michael Sundue, with significant input from numerous taxonomic specialists for a variety of
taxa. The treatment covers 331 pages and follows the standard format of floras, including dichotomous keys to families, genera, and species, full descriptions of families, genera and species, taxonomic or morphological notes, specimen citations, and some ecological information for each species (elevation and vegetation types in which the species has been found); nomenclatural remarks are kept to a minimum. In addition, the flora includes 61 color photographs (49 of ferns) and 115 black-and-white photographs of herbarium specimens (107 of ferns). There are 20 pages of general introduction giving a brief outline of the vegetation types of the flora region and of the history of its botanical exploration plus no less than 15 pages of glossary explaining botanical terms.

Overall, the taxonomic treatment is of very high quality. Dr. Sundue has invested an inordinate amount of work into clarifying even the most obscure taxonomic problems and into making sure that all the latest developments of fern classification/taxonomy, both at the family and generic level as well as at species level, are taken into account. Unavoidably, some of the very latest developments, such as the segregation of Neotropical species of *Micropolypodium* into the new genus *Moranopteris*, have not been considered. I have used some of the keys and have found them to work very well even for difficult groups such as *Elaphoglossum* or *Campyloneurum*. This is certainly one of the best fern floras currently available for any part of the tropical Andes.

As a result, this is a highly important work for anybody interested in tropical Andean ferns. Because of it’s location in central Bolivia, the flora – which covers about one third of the Bolivian fern flora – nicely fills the gap between the fern floras of Peru and Jujuy in northern Argentina, and includes a number of endemic Bolivian species not covered by either of the other floristic works. Until the publication of a forthcoming fern flora for the entire country (Kessler and Smith, in prep.), this will be the major reference for Bolivian ferns, and will also be useful for northern Argentina and to a lesser degree southern Peru. That the flora is written in Spanish makes it readily accessible to the Bolivian researchers and public (the main audience) while perhaps limiting its use to non-Spanish speakers, although the technical terminology is so similar that most of the text can be used by anybody with a good foundation in English botanical terminology. If you are interested in Andean ferns, then there is much to learn from and enjoy in this book. The authors and FAN are to be highly commended for producing this important piece of literature for what is probably the botanically least well known South American country.

Unfortunately, I must end this review on a critical note. While preparing this review, I also inquired about the availability of the book outside of Bolivia and to my great disappointment had to learn that the book can only be ordered directly from the publisher (www.fan-bo.org) and that this is very complicated. At the time of writing, the book was not even listed on their website so that you had to know that it exists and specifically ask for it via e-mail, and payment was only possible by money order. I have also learnt that Missouri Botanical Garden considered obtaining a number of these books to be able to make them available to a wider public, but that this project was cancelled due to
communication problems with the publisher. It is sad to realize that unless a solution is found for these problems, this important publication will likely receive much less distribution outside of Bolivia than it would deserve.—Michael Kessler, Systematic Botany and Botanical Garden, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
ERRATUM

AFJ volume 101, issue 4, pp. 282–294

In describing the new species Bolbitis lanceolata J.Y. Xiang & S.K. Wu (Amer. Fern J. 101(4): 287–290. 2011), we inadvertently omitted the explicit designation of a holotype from among the duplicates of the type gathering. The corrected type citation appears below. This validates the species description by direct association with the original protologue and delays the effective date of publication for the name to that of the present issue.

Bolbitis lanceolata S. K. Wu & J. Y. Xiang, sp. nov. TYPE.—LAOS. Khammoun Province: Nakai District, Nakai Village, Phou Ar. (Dan Feuang), 17°43’217” N, 105°07’663” E, in evergreen forest, on limestone rocks, 650–750 m, Oct. 31, 2007, Wu SG, Liu ED, Xiang JY, Somsanith B, Onevilay S 121 (holotype: KUN; isotypes: MO, TMRC). Fig. 1: A–C, Fig. 2.
INFORMATION FOR AUTHORS

Authors are encouraged to submit manuscripts pertinent to pteridology for publication in the American Fern Journal. Manuscripts should be sent to the managing editor at hauk@denison.edu. Acceptance of papers for publication depends on merit as judged by two or more referees. Authors are encouraged to contribute toward publishing costs; however, the payment or non-payment of page charges will affect neither the acceptability of manuscripts nor the date of publication.

Authors should adhere to the following guidelines; manuscripts not so prepared may be returned for revision prior to review. **Electronic submission is strongly encouraged:** however if it is necessary to submit hard copy, please submit one copy of the manuscript and include a review copy of illustrations and originals of illustrations. After acceptance, please submit final versions of manuscripts via FTP (contact the managing editor for instructions), email, or on diskette or CD ROM (see below for figure formatting). If submitting hard copies, use standard 8.5 by 11 inch paper of good quality, not "erasable" paper. **Double-space manuscripts throughout**, including title, author’s names and full addresses, a short, informative abstract, key words, text (including heads and keys), literature cited, tables (separate from text), and figure captions (grouped as consecutive paragraphs separate from figures). Arrange parts of manuscript in order just given. Include author’s name and page number in the upper right corner of every sheet, and provide an abbreviated running title. Provide margins of at least one inch (25 mm) all around on typed pages. Do not submit right-justified text, avoid footnotes, and do not break words at end of lines. Make table headings and figure captions self-explanatory. Use S.I. (metric) units for all measures (e.g., distance, elevation, weight) unless quoted or cited from another source (e.g., specimen citations). For nomenclatural matters (i.e., synonymy and typification), use one paragraph per basionym (see Regnum Veg. 58:39–40. 1968). Abbreviate titles according to Botanico-Periodicum-Huntianum (Lawrence et al., 1968, Hunt Botanical Library, Pittsburgh) and its supplement (1991). References cited only as part of nomenclatural matter are not included in literature cited. For shorter notes and reviews, omit the abstract and put all references parenthetically in text. Use Index Herbariorum (Regnum Veg. 120:1–693. 1990; or http://websun.nybg.org/bsci/ih/) for designations of herbaria. For more detailed instructions on manuscript preparation, see http://amerfernsoc.org/.

Illustrations should be proportioned to fit page width (5 inches or 12.5 cm) with caption ultimately to be included on the same page. Halftone and color images should be scanned at a minimum of 300 pixels per inch (ppi). Line art should be scanned at 1200 ppi whenever possible. Please note that nearly all images that are downloaded from the Internet or that are in JPEG or GIF format will be 72 dpi and not acceptable for the printing process. Indicate the file format of the graphics. Please submit image files in TIFF (preferable) or EPS format. Provide margins of at least 25 mm on all illustrations. For continuous-tone illustrations, design originals for reproduction without reduction or by uniform amount. In composite blocks, abut edges of adjacent photographs. Avoid combining continuous-tone and line-copy in single illustrations or blocks. Coordinate sequence and numbering of figures (and tables), with order of citation in text. Explain scales and symbols in figures themselves, not in captions. Include a scale and reference to latitude and longitude in each map.

Instructions for downloading electronic proofs and reprint order forms are sent to authors by the printer. Authors should send proof corrections of corrected proofs to the editor and reprint orders to the printer. Authors will be assessed charges for extensive alterations made after type has been set.

For other matters of form or style, consult recent issues of the American Fern Journal and The Chicago Manual of Style, 14th ed. (1993, Univ. of Chicago Press, Chicago). Occasionally, departure from these guidelines may be justified. Authors are encouraged to consult the editor for assistance with any aspect of manuscript preparation.

Papers of longer than 32 printed pages may be sent to the Editor of Pteridologia (memoir Editor, see journal cover page 2).
The following issues of *Pteridologia*, the memoir series of the American Fern Society, are available for purchase:

1. Wagner, David H. 1979. Systematics of *Polystichum* in Western North America North of Mexico. 64 pp. $10.00 plus postage and handling.

For orders and more information, please contact our authorized agent for sales at: Missouri Botanical Garden Press, P.O. Box 299, St. Louis, MO 63166-0299, tel. 314-577-9534 or 877-271-1930 (toll free). For online orders, visit: http://www.mbgpress.org.

AMERICAN FERN JOURNAL ON MICROFICHE

Volumes 1–61 of the *American Fern Journal* are available as archival quality, silver positive microfiches. Single volumes or the entire run may be purchased. The fiches are easily read with 10x or greater magnification (using a dissecting microscope and transmitted illumination or a fiche reader). Silver negative microfiches of vols. 1–50 are also available. The price is $4.00 per volume or $244.00 per set of 61 volumes, postpaid.

Send your inquiry or order with a check or money order to: American Fern Society, Inc., % Ecology III, 804 Salem Blvd., Berwick, PA, 18603-9801.

FIDDLEHEAD FORUM

The editor of the Bulletin of the American Fern Society welcomes contributions from members and non-members, including miscellaneous notes, offers to exchange or purchase materials, personalia, horticultural notes, and reviews of non-technical books on ferns.

SPORE EXCHANGE

Ms. Denia Mandt, 12616 Ibbetson Ave., Downey, CA 90242-5050, is Director. Spores exchanged and lists of available spores sent on request. http://amerfernsoc.org/sporex.ch.html

GIFTS AND BEQUESTS

Gifts and bequests to the Society enable it to expand its services to members and to others interested in ferns. Back issues of the Journal and cash or other gifts are always welcomed and are tax-deductible. Inquiries should be addressed to the Membership Secretary.

VISIT THE AMERICAN FERN SOCIETY’S WORLD WIDE WEB HOMEPAGE:

http://amerfernsoc.org/
Farina Production by Gametophytes of Argyrochosma nivea (Poir.) Windham (Pteridaceae) and its Implications for Cheilanthoid Phylogeny
Jose María Gabriel y Galán and Carmen Prada 191

Cytotoxic and Tripanocide Activities of Pityrogramma calomelanos (L.) Link.

Effects of Ageratina adenophora on Spore Germination and Gametophyte Development of Neocheiropoteris palmatopedata

Occurrence of Dark Septate Endophytes in the Sporophytes of Christella dentata
Rebeca Ghanta, Sikha Dutta, and Radhanath Mukhopadhyay 216

Azolla cristata in the Kashmir Himalaya
Burhan Ahad, Zafar A. Reshi, Aijaz H. Ganaie, and A. R. Yousuf 224

Shorter Notes

New Country and Regional Records from the Brazilian Side of Neblina Massif
Fernanda Antunes Carvalho, Alexandre Salino, and Charles Eugene Zartman 228

New Records Of Ferns From Chiapas, Mexico
Miguel A. Pérez-Farrera, Ma. Evangelina López-Molina, Nayely Martínez-Meléndez, and Héctor Gómez-Domínguez 233

Obituary: The Rev. Father Dr. V. S. Manickam S. J. (1944–2012)
Dr. A. Benniamin and Chris Fraser-Jenkins 236
The American Fern Society
Council for 2012

KATHLEEN PRYER, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708.
President

JAMES E. WATKINS, JR., Dept. of Biology, Colgate University, Hamilton, NY 13346.
President-Elect

MARY STENSVOLD, USDA Forest Service, 204 Siginaka Way, Sitka, AK 99835.
Secretary

JAMES D. CAPONETTI, Div. of Biology, University of Tennessee, Knoxville, TN 37996-0830.
Treasurer

GEORGE YATSKIEVYCH, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.
Membership Secretary

Curator of Publications

JENNIFER M. O. GEIGER, Dept. of Natural Sciences, Carroll College, Helena, MT 59625.
Journal Editor

R. JAMES HICKEY, Dept. of Botany, Miami University, Oxford, OH 45056.
Memoir Editor

JOAN N. E. HUDSON, Dept. of Biological Science, Sam Houston State University, Huntsville, TX 77341-2116.
DAVID SCHWARTZ, 9715 Christey Way, Bakersfield, CA 93312-5617.
Bulletin Editors

American Fern Journal
EDITOR
JENNIFER M. O. GEIGER Dept. of Natural Sciences, Carroll College, Helena, MT 59625,
phone (406) 447-4461, e-mail: jgeiger@carroll.edu

MANAGING EDITOR
JILL ANNE DILL .. Dept. of Natural Sciences, Carroll College, Helena, MT 59625,
phone (406) 447-5176, e-mail: jdill@carroll.edu

ASSOCIATE EDITORS
NAN CRYSTAL ARENS Dept. of Geoscience, Hobart & William Smith Colleges, Geneva, NY 14456
JOSE MARÍA GABRIEL Y GALÁN Dept. de Biología Vegetal I, Universidad Complutense de Madrid, Madrid, Spain 28040
GERALD J. GASTONY Dept. of Biology, Indiana University, Bloomington, IN 47405-6801
GARY K. GREER Biology Dept., Grand Valley State University, Allendale, MI 49401
CHRISTOPHER H. HAUFLEGER Dept. of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-2106

R. JAMES HICKEY Dept. of Botany, Miami University, Oxford, OH 45056
PAULO LABIÁK Universidade Federal do Paraná, Dept. de Botânica, 81531-980, Curitiba-PR, Brasil
ROBBIN C. MORAN New York Botanical Garden, Bronx, NY 10458-5126
NATHALIE NAGALINGUM Royal Botanical Garden Sydney, Sydney, NSW, Australia
CARL ROTHFELS Botany Dept., Duke University, Durham, NC 27708
EMILY SESSA Botany Dept., University of Wisconsin-Madison, Madison, WI 53706
MICHAEL SUNDUE Pringle Herbarium, The University of Vermont, Burlington, VT 05405
JAMES E. WATKINS, JR. Dept. of Biology, Colgate University, Hamilton, NY 13346

The "American Fern Journal" (ISSN 0002-8444) is an illustrated quarterly devoted to the general study of ferns. It is owned by the American Fern Society, and published at The American Fern Society, % Missouri Botanical Garden, P. O. Box 299, St. Louis, MO 63166-0299. Periodicals postage paid at St. Louis, MO, and additional entry.

Claims for missing issues, made 6 months (domestic) to 12 months (foreign) after the date of issue, and orders for back issues should be addressed to Dr. James D. Montgomery, Ecology III, 804 Salem Blvd., Berwick, PA 18603-9801.

Changes of address, dues, and applications for membership should be sent to the Membership Secretary.

General inquiries concerning ferns should be addressed to the Secretary.

Back volumes are available for most years as printed issues or on microfiche. Please contact the Back Issues Curator for prices and availability.

Subscriptions:
Society Membership – USA, Canada, Mexico (includes Journal and Fiddlehead Forum) $30
Society Membership – All other countries (includes Journal and Fiddlehead Forum) $40
Society Life Membership – $360 (add $120 mailing surcharge for outside USA, Canada, Mexico) $470
Regular Membership – USA, Canada, Mexico (includes Fiddlehead Forum) $15
Regular Membership – All other countries (includes Fiddlehead Forum) $22
Institutional Membership – $40 to USA, Canada, Mexico; $50 elsewhere (-$3 agency fee)

POSTMASTER: Send address changes to American Fern Journal, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.
Farina Production by Gametophytes of *Argyrochosma nivea* (Poir.) Windham (Pteridaceae) and its Implications for Cheilanthoid Phylogeny

JOSE MARÍA GABRIEL Y GALÁN and CARMEN PRADA
Departamento de Biología Vegetal I, Universidad Complutense de Madrid, Avda. Jose Antonio Nováis, 2, 28040 Madrid (Spain)

Abstract.—Modern molecular phylogenetic studies of the Pteridaceae have recognized a well supported cheilanthoid clade that includes four major subclades: myriopteroids, pellaeoids, hemionitidoids and notholaenoids. Many of the morphological characters used in delimitation of the cheilanthoid lineages and genera appear to be the result of convergent evolution, a result of adaptation to xeric environments. Faced with the apparent lack of sporophytic synapomorphies for the cheilanthoid subclades, farina production by gametophytes has been proposed as a character of possible phylogenetic utility. All the notholaenoid species observed to date produce farina in their gametophytes, but species of the other cheilanthoid clades (pellaeoids, hemionitidoids, and myriopteroids) do not. In this work we provide the first account of farina production in the gametophyte of a non-notholaenoid: two accessions of *Argyrochosma nivea* from different geographical localities were found to have farina on their gametophytes, suggesting that this gametophytic character is not a synapomorphy for the notholaenoids, and may have had several independent evolutionary origins.

Key Words.—Pteridaceae, cheilanthoids, *Argyrochosma*, farina, gametophyte, *Notholaena*

Pteridaceae is a large family with ca. 50 genera and about 1000 species. In its modern conception it is monophyletic and includes, among others, the Adiantaceae and Vittariaceae (Smith et al., 2008). However, internal relationships within the family and circumscription of many genera are still under review. Based on recent molecular analyses, five monophyletic groups can be recognized: cryptogrammoids, ceratopteridoids, pteridoids, cheilanthoids and adiantoids (Schuettpelz et al., 2007; Schuettpelz and Pryer, 2008; Smith et al., 2008). Cheilanthoid ferns comprise around 400 species, and form a very well supported clade (Gastony and Rollo, 1995; Schuettpelz and Pryer, 2007). Within this group, molecular studies suggest the existence of four major clades (Fig. 1): myriopteroids, pellaeoids, hemionitidoids, and notholaenoids (Rothfels et al., 2008; Windham et al., 2009). Cheilanthoid taxonomy is particularly difficult, due to their great morphological diversity (for example, in frond architecture and presence of pseudoindusium) and to convergent evolution resulting from their adaptation to arid environments (Rothfels et al., 2008). In this last sense, one of the most confusing characters is the presence of farina in the sporophytes. Farina is a white or yellow powder, produced by glandular hairs and of variable composition, but often containing flavonoids. Farina is produced by sporophytes of a number of species within each of these cheilanthoid subclades, and is thus a homoplastic character.
Some morphological characters, however, may function as synapomorphies for some of the cheilanthoid lineages. One of these potential synapomorphies is the production of farina by the gametophyte (Rothfels et al., 2008). All notholaenoid species observed to date produce farina on their gametophytes, but those of the other cheilanthoid subclades (pellaeoids, hemionitidoids, myriopteroids) do not (Fig. 1). Thus, the presence of farina in the gametophyte is potentially an important feature for defining the notholaenoid group. This is very interesting, given the traditional lack of attention paid by taxonomists to gametophytic characters, a fact that is likely attributable to their reduced levels of morphological variation.

Ar gyrochosma is a New World genus, segregated from Notholaena R. Brown some decades ago (Windham, 1987), and comprises around 16 species (Sigel et al., 2011). Ar gyrochosma nivea (Poir.) Windham consists of a complex of three mainly apogamous taxa, considered as varieties: two of them, var. nivea and var. flava (Hook.) Ponce, produce farina on their sporophytes, and the other, var. tenera (Gilles ex Hook.) Ponce, has glabrous (non-farinose) sporophytes (Sigel et al., 2011).

The haploid phase of A. nivea var. nivea is very well known, from studies on spore morphology (Morbelli et al., 2001), spore germination and gametophyte development (Gabriel y Galán, 2011) and reproduction via apogamy (Woronin,
1907; Gabriel y Galán, 2011). These studies report the gametophyte of A. nivea as non-farinose, in agreement with the pellaeoid gametophyte concept described above.

Nevertheless, as relatively few cheilanthoid gametophytes have been studied, more effort is required before accepting definitively the synapomorphic status of gametophytic farina for the notholaenoids. With this in mind, and within a broader framework of observing morphology, development, and reproduction of Pteridaceae gametophytes, the goal of the current study was to determine if other A. nivea varieties besides var. nivea also produce non-farinose gametophytes.

Material and Methods

Samples of Argyrochosma used in this study were collected from the following locations: Argyrochosma nivea var. nivea: Peru, Cuzco Department, Urubamba Province, Ollantaytambo, beyond Huilloq, 13°14’50.5"S 72°15’28.8"W, 2920 m, in rocks, JM Gabriel y Galán, 28-04-2008. Argentina, Catamarca, El Alto Department, Sierra de Ancasti, between El Portezuelo and El Alto, 28°27’52”S 65°35’10”W, 1855 m, granite rocks, Prada, 16-09-2010. Argyrochosma nivea var. flava: Argentina, Córdoba, San Alberto Department, Quebrada Los Pozos, dique La Viña, 31°52’24”S 65°01’54”W, 910 m, granite rocks, Prada, 17-09-2010. Material was identified following local floras (Tryon and Stolze, 1989; de la Sota et al., 2009), and is deposited in the Herbarium of the Real Jardín Botánico de Madrid (MA).

Spore samples for cultures were taken from two different sporophytes at each location and kept dry at room temperature. Multispore cultures on mineral agar medium (Dyer, 1979) were established by manually removing spores from fertile pinnae on a weigh paper, and placing them in Petri dishes 6 cm in diameter. The sowing of each sample was replicated three times. Gametophytes were grown under fluorescent light on a 12-h light, 12-h dark cycle at 20 ± 2°C, for c. 8 months. At different stages of maturity, random gametophyte samples of each culture were stained with chloral hydrate acetocarmine (Edwards and Miller, 1972). Fixed and in vivo materials were mounted in water and observed under a light microscope. In total, c. 150 gametophytes were assayed, c. 50 of each of the three samples (two of var. nivea and one of var. flava).

Results

Both varieties of Argyrochosma nivea produced cordate gametophytes following the Vittaria type of development, although a notable number of prothalli acquired an irregular shape. Because description of the development and complete morphological features of the gametophytes exceeds the objectives of this work, we will focus specifically on farina production.

Gametophytes of A. nivea var. flava remained glabrous throughout the observational period. In contrast, some of the gametophytes of A. nivea var. nivea, about 20% of the total observed, produced short glandular hairs along their margin, which produced farina with time (Fig. 2). With very few
exceptions, these hairy gametophytes were those with cordate shape. The morphology of the hairs was constant in all the gametophytes: two cells, a more-or-less elongated basal one and a capitate secretory apical one. The hairs appeared more abundant near the apical notch, but they also spread towards the wings.

These marginal gametophytic trichomes could be detected towards maturity of the gametophytes, which occurred 30–40 days after sowing. Their
emergence coincided in time with the first visible indications of an apogamous sporophyte, which was the production under the notch of 2–5 very long hairs that finally reached up to 40 cells. These hairs associated with the apogamous sporophyte were very different to the ones of the gametophyte. All the gametophytes that produced sporophytes (about 75% of the total observed) also formed these long hairs associated with the sporophytes, but not all produced short marginal ones. Secretion of white farina by the marginal gametophytic hairs began within a few days following their formation. All of the observed marginal hairs produced farina. Sometimes, the long glandular hairs associated to the apogamous sporophyte produced farina also.

While the long glandular hairs elongated and the short hairs began to produce farina, proliferative areas appeared below the notch that gave rise to the new apogamous sporophyte. Some 3–5 days later, a dense cluster of cells emerged from these areas and began to produce 2–6 celled hairs that also secreted farina. Finally, as the new sporophyte elongated and acquired a leafy shape, glandular hairs appeared over its margins and lamina.

Discussion

Observations to date of cheilanthoid gametophytes have shown that development of naked, hairless, non-glandular bodies predominates (Nayar and Kaur, 1971; Gabriel y Galán and Prada, 2009). Some gametophytes were known to produce hairs, however (Gabriel y Galán and Prada, 2010), and less frequently, even glandular secretions including farina (Tryon, 1947; Giauque, 1949; Nayar and Kaur, 1971; Atkinson, 1973). Following the availability of molecular phylogenies, it became clear that all the glandular farinose gametophytes observed were restricted to members of the notholaenoid lineage (Rothfels et al., 2008). This was then proposed as a synapomorphic character supporting the notholaenoid clade, although with caution, due to the small number of observed gametophytes, (Rothfels et al., 2008; Sigel et al., 2011).

In this work we document for the first time farina production in gametophytes of the pellaeoid species Argyrochosma nivea. As far as is known, there are only three previous studies on gametophytes of Argyrochosma, one of A. incana (C. Presl) Windham (Nayar and Bajpai, 1964) and two of A. nivea (Woronin, 1907; Gabriel y Galán, 2011). All of these studies described naked, non-farinous gametophytes. The new observations made in this work report the presence of marginal glandular hairs in some of the gametophytes, which produce white farina at maturity. Timing in farina production is quite delayed in comparison with other known farinous gametophytes, as in some Notholaena (Nayar and Kaur, 1971): in Argyrochosma the phenomenon seems to occur towards gametophyte maturity. Several characters of the gametophytic farina indicate that it is independent of the sporophytic farina, including hair morphology (2-celled farinous gametophytic hairs vs. up to 40-celled first sporophytic farinous hairs), timing and amount of farina production (marginal gametophytic farina appears days before the proliferative clusters of sporophytes produce signals of farina,
and reduced farina production by the gametophyte compared to the sporophyte is similar to that in some notholaenoid species [Nayar and Kaur, 1971], and location of farinose cells (marginal hairs develop near the notch but also in the wings). However, gametophytic farina appears identical to that produced by the sporophytes, in both color and texture, as seen under a microscope. Chemical analyses to confirm these observations should be undertaken.

Farina production in gametophytes of A. nivea var. nivea seems to be facultative, as only some individuals from each of the two different localities showed the character, while the majority remained glabrous. There is no obvious correlation between farina production and ecology by which to explain this facultative nature, as all of the sporophytes collected for this work lived under the same xeric conditions in exposed rock crevices, at more or less similar altitude. It may be that farina production in the gametophyte is triggered by the development of the apogamous sporophyte, because farina production by the gametophytes only occurs at gametophytic maturity. This deserves further investigation, but if this hypothesis is considered, it will be necessary to explain why some gametophytes produced sporophytes but not farina.

Whatever the trigger for farina production may be, its occurrence in gametophytes of Argyrochosma is no longer in doubt. The presence of farinous gametophytes in members of the pellaeoid subclade of cheilanthoid ferns indicates that this character should no longer be considered a synapomorphy for the notholaenoids. It seems that farina production by gametophytes, like farina production by sporophytes, is a convergent character within cheilanthoids, appearing independently in at least the notholaenoid and pellaeoid lineages (Rothfels et al., 2008; Sigel et al., 2011). In addition to observation of more gametophytes from all the Pteridaceae lineages, a more detailed ecological study is necessary in order to determine which variables may influence farina production in gametophytes of A. nivea.

ACKNOWLEDGMENTS

Field trips were made with financial support from the Spanish Red Universitaria de Investigación sobre Cooperación para el Desarrollo (project G07/10) and the Ministerio de Ciencia e Innovación (project CGL 2009-13622, Subprograma BOS).

LITERATURE CITED

GABRIEL Y GALÁN & PRADA: FARINA IN GAMETOPHYES OF ARGYROCHOSMA NIVEA 197

Cytotoxic and Tripanocide Activities of *Pityrogramma calomelanos* (L.) Link.

Teogenes M. de Souza*, Maria F. B. M. Braga, Rogério A. Saraiva, Pablo A. Nogara, Diones C. Bueno, Aline A. Bolicon, Margaret L. A. Fone, and João B. T. da Rocha

Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato (CE), Brasil

Miriame Rolon, Celeste Vega, and Antonieta Rojas de Arias

Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción-Paraguay

Jose G. M. Costa

Laboratório de Pesquisa em Produtos Naturais, Universidade Regional do Cariri, Crato (CE), Brasil

Irwin R. Alencar de Menezes

Laboratório de Farmacologia e Química Molecular, Universidade Regional do Cariri, Crato (CE), Brasil

Henrique D. M. Coutinho and Antônio A. F. Saraiva

Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato (CE), Brasil

ABSTRACT.—Chagas disease is caused by *Trypanosoma cruzi*, and is considered a public health problem. The current treatments for this disease are the synthetic drugs nifurtimox and benzonidazol, which are highly toxic. *Pityrogramma calomelanos*, a plant used in traditional medicine as an astringent, analgesic, anti-hemorrhagic, pectoral depurative, emmenagogue, anti-hypertensive, anti-pyretic and an anti-tussive was tested for antiepipamastigote activity in vitro. An ethanol extract and hexane fraction of *P. calomelanos* was prepared and tested against *T. cruzi* (CL-B5 clone). The effective concentration capable of killing 50% of parasites (EC₅₀) was 55.26 µg/mL and 73.57 µg/mL for the ethanol extract and hexane fraction, respectively. This is the first record of tripanocidal activity for *P. calomelanos*. Our results indicate that *P. calomelanos* could be a source of antiepipamastigote natural products with only moderate toxicity toward healthy human cells.

KEY WORDS.—Antiepipamastigote activity, Chagas disease, cytotoxicity, *Pityrogramma calomelanos*

Developing countries with abundant traditional knowledge and rich biodiversity, as in the case of Brazil, still grapple with a high incidence of so-called “neglected diseases,” such as tuberculosis, malaria and Chagas disease (Croft *et al.*, 2005); diseases that have the potential to be treated with natural products of plant origin from Brazil (Croft *et al.*, 2005). Brazil has the greatest biodiversity in the world, with more than 55,000 species of plants cataloged, and an estimated total of 550,000 species (Croft and Sundar, 2006), but only 8% have been studied in the search for bioactive compounds (Simões *et al.*, 2007).

Chagas disease is caused by the flagellate protozoan *Trypanosoma cruzi*, transmitted mainly by the insects from the genus *Triatoma*, representing a
public health problem in South America with 20 million people infected and 90 million at risk in endemic areas (WHO, 2000). The parasite can be transmitted to humans by triatomine insects, foods contaminated with feces, blood, organ transplants, and by the transplacental route (Prata, 2001).

The treatment of this disease remains ineffective. Several compounds have been tested to evaluate their ability to eliminate infection by T. cruzi (Lana and Tahiri, 2005). Two drugs are currently used: nifurtimox and benzonidazole. These drugs are active against the parasite blood and tissue forms. However, side effects of these drugs are the most significant argument against their general use: the use of nifurtimox is associated with weight loss, psychic alterations and gastric problems; the use of benzonidazole is associated with cutaneous problems such as hypersensitivity, dermatitis, edema, fever, lymphadenopathy and muscle pain (Castro et al., 2006).

Due to these side effects, there is an urgent need for the development of new drugs, and a source for these new drugs can be natural products with anti-T. cruzi activity (WHO, 2002). Coura and Castro (2002) reported that several herbal products, such as alkaloids, taxoids, estilbenoids, hormones, propolis, naphthoquinones and crude extracts from plants, have activity against T. cruzi. In their work, Menezes et al. (2005) related that coumarinic compounds with the highest binding affinity, such as chapelin, isolated from Rutaceae species promoted the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In this binding study, the affinity of the compounds was determined by their ability to displace NAD+ from the enzyme receptor site. The inhibition of this enzyme affects the process of energy generation by glycolysis in the amastigote forms of T. cruzi.

Pityrogramma calomelanos (L.) Link. (Pteridaceae), known in Brazil as “avenca-branca” or “avenca-preta” is used as an ornamental and medicinal plant. This fern has several biological properties reported in the literature such as astringent, analgesic, anti-hemorrhagic, anti-hypertensive, anti-pyretic, anti-tussive (Barros and Andrade, 1997). Many compounds from the leaves of P. calomelanos that have been isolated are flavonoids, [(8-phenylpropionyl)-5,7-dihydroxydihydroneoflavone] and {8-[3-(4-p-methoxyphenyl)porpionyl]-7-dihydrodihydroxyneoflavone} named calomelanol (Fujiio et al., 1991), terpenes, as calomelanolactone (Victor et al., 1978) and chalcones, as 2’,6’-dihydroxy-4’,4’-dihydroxychalcone (Sukuruman and Ramadasan, 1991). Due to the social and economic importance of Chagas disease and the absence of studies reporting on the effect of this fern against T. cruzi, the purpose of this work was to demonstrate the anti-Trypanosoma activity of Pityrogramma calomelanos.

Materials and Methods

Plant Material

Leaves of *Pityrogramma calomelanos* were collected in the rainy season (September, 2009) in the city of Crato, Ceará State, Brazil. The plant material
was identified by Dr. Antonio Álamo Feitosa Saraiva and the voucher specimen was deposited with the identification number 5570 in the Herbarium “Dárdano de Andrade Lima” of University of the Region of Cariri, Crato, CE, Brazil.

Preparation of Ethanol Extract (EEPC) and Hexane Fraction (HFPC) of Pityrogramma Calomelanos

Nine hundred fifty grams of leaves were dried and kept at room temperature. The powdered leaf material was macerated using 1 L of 95% ethanol as the solvent for 72 h at room temperature. The mixture was filtered and concentrated under vacuum in a rotary evaporator under 60°C and 760mm/Hg of temperature and pressure, respectively (Brasileiro et al., 2006). Nine hundred fifty grams of aerial parts yielded 50 g of ethanol extract (EEPC). After this, 40 g of EEPC were dissolved in 95% ethanol mixed with silica gel (Merck®) and fractionated with hexane by percolation with the solvent. The hexane fraction (HFPC) was concentrated under vacuum in a rotary evaporator under 60°C and 760 mm/Hg of temperature and pressure, producing 0.56 g of HFPC. The hexane was chosen to extract nonpolar compounds of the EEPC. After this, the ethanol extract and hexane fraction were diluted using 1 mL of DMSO to the assays.

Phytochemical Screening

The qualitative phytochemical assays were performed to detect the presence of secondary metabolites. The tests are based in the visual observation of color modifications or by precipitation after the use of reagents to detect each group of secondary metabolites. The tests were performed according Matos (2009).

Quantification of Phenolics Compounds of Hexane Fraction by HPLC-DAD

Reverse phase chromatographic analyses were carried out under gradient conditions using C18 column (4.6 mm × 250 mm) packed with 5 μm diameter particles; the mobile phase was water containing 2% acetic acid (A) and methanol (B), and the composition gradient was: 5% of B until 2 min and changed to obtain 25%, 40%, 50%, 60%, 70% and 100% B at 10, 20, 30, 40, 50 and 80 min, respectively, following the method described by Laghari et al. (2011), with slight modifications. The fern extract was analyzed and dissolved in hexane at a concentration of 3 mg/mL. The presence of six phenolic compounds was investigated, namely, gallic, chlorogenic and caffeic acids and the flavonoids quercetin, rutin and kaempferol. Identification of these compounds was performed by comparing their retention time and UV absorption spectrum with those of the commercial standards. The flow rate was 0.6 mL/min, injection volume 40 μL and the wavelengths were 254 nm for gallic acid, 325 nm for caffeic and chlorogenic acids, and 365 nm for quercetin, rutin and kaempferol. The hexane fraction and mobile phase were filtered through 0.45 μm
membrane filter (Millipore) and then degassed by ultrasonic bath prior to use. Stock solutions of standard references were prepared in the HPLC mobile phase at a concentration range of 0.020–0.200 mg/mL for kaempferol, quercetin and rutin; and 0.050–0.250 mg/mL for gallic, caffeic and chlorogenic acids. The chromatography peaks were confirmed by comparing retention time with those of reference standards and by DAD spectra (200–400 nm). All chromatography operations were carried out at ambient temperature and in triplicate.

Cell Strains Used

For in vitro studies of Trypanosoma cruzi, the clone CL-B5 was used (Buckner et al., 1996). The stable parasite, transfected with Escherichia coli (lacZ) that have the gene coding for β-galactosidase, was kindly provided by Dr. F. Buckner through Instituto Conmemorativo Gorgas (Panama). Epimastigotes were grown at 28°C in liver infusion tryptose broth (Difco, Detroit, MI) with 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA), penicillin (Ern, S.A., Barcelona, Spain) and streptomycin (Reig Jofr'e S.A., Barcelona, Spain), as described previously (Le Senne et al., 2002), and harvested during the exponential growth phase.

Murine J774 macrophages were grown in plastic 25 μL flasks in RPMI 1640 medium (Sigma®, with glutamine, without bicarbonate and phenol red indicator), supplemented with 20% heat inactivated (30 min, 56°C) fetal bovine serum (FBS) and penicillin G (100 U/mL) and streptomycin (100 μg/mL) in a humidified 5% CO2/95% air atmosphere at 37°C. For the experiments, cells in the pre-confluence phase were harvested with trypsin. Cell cultures were maintained at 37°C in a humidified 5% CO2 atmosphere. Cell viability was evaluated colorimetrically with resazurin according to a previously described method (Rolon et al., 2006).

Reagents

Chlorophenol red-β-D-galactopyranoside (CPRG; Roche, Indianapolis, IN) was dissolved in 0.9% Triton X- 100 (pH 7.4). Penicillin G (Ern, S.A., Barcelona, Spain), streptomycin (Reig Jofr'e S.A., Barcelona, Spain). Resazurin sodium salt was obtained from Sigma-Aldrich (St Louis, MO) and stored at 4°C protected from light. A solution of resazurin was prepared in 1% phosphatubuffered solution (PBS), pH 7, and filter sterilized prior to use.

Epimastigote Susceptibility Assay

The screening assay was performed in 96-well microplates with cultures that had not reached the stationary phase, as described (Vega et al., 2005). Briefly, epimastigotes were seeded at 1×10^5 mL$^{-1}$ in 200 μL of liver tryptose broth medium. The plates were then incubated with EEPC and HFPC (0.1–50 μg/mL) at 28°C for 72 h, at which time 50 μL of CPRG solution was added to give a final concentration of 200 μM. the plates were incubated at 37°C for an additional 6 h and were then read at 595 nm. Nifurtimox was used as the reference drug. Each
concentration was tested in triplicate. Each experiment was performed twice separately. The efficacy of each compound was estimated by calculating the antiepimastigote percent (AE%).

Cytotoxicity Assays

Murine J774 macrophages were seeded (5 × 10^4 cells/well) in 96-well flat-bottom microplates with 100 μL of RPMI 1640 medium. The cells were allowed to attach for 24 h at 37°C, 5% CO₂, after which the medium was removed and replaced with medium containing different concentrations of treatment. Macrophages were incubated with treatment for another 24 h. Growth controls were also included. Afterwards, 20 μL of 2 mM resazurin solution was added and plates were returned to incubator for another 3 h. to evaluate cell viability. The reduction of resazurin was determined by dual wavelength absorbance measurement at 490 nm and 595 nm. Background was subtracted. Each concentration was assayed three times. Blanks include medium and treatment only. The cytotoxicity of each compound was estimated by calculating the cytotoxic percentage (EC₅₀), cells surviving/cells dead.

Statistical Analysis

The statistical analysis was performed using Prism program 5.0. The effective concentration (EC₅₀) was calculated by the linear regression method.

RESULTS AND DISCUSSION

The phytochemicals are shown in Table 1. Two groups of substances were observed in the hexane fraction but not detected in the ethanol extract: flavonols and chalcones.

HPLC Analysis

Due to the results obtained with the hexane fraction, this product was subjected to HPLC analysis for quantification of phenol compounds. HPLC fingerprinting of hexane fraction of Pityrogramma calomelanos revealed the presence of the gallic acid (t_R = 17.83 min; peak 1), chlorogenic acid (t_R = 28.14 min; peak 2), caffeic acid (t_R = 34.09 min; peak 3), quercetin (t_R = 49.78 min; peak 5) and kaempferol (t_R = 58.96 min; peak 6) (Fig. 1 and Table 2). The HPLC analysis, according to the chemical analysis, revealed the presence of flavonoids (quercetin and kaempferol) and phenolic acids (chlorogenic and caffeic acids) in the HFPC.

Our results indicate that HFPC, when tested at a concentration of 50 μg/mL, was active against epimastigote forms of T. cruzi, killing 71% of the parasites with 0% cytotoxicity. This article is the first report relating the chemical composition of P. calomelanos with the trypanocidal activity. Hayacibara et al. (2005) reported that the chemical composition of propolis (a resinous mixture collected by honey bees from tree buds, flowers or other botanical sources) is
rich in phenylpropanoids (chlorogenic and caffeic acids) and Prytyzk et al. (2003), tested the in vitro activity of the propolis extract against *Trypanosoma cruzi*, detecting an interesting activity against epimastigote forms of this parasite. These results are similar to our work, showing a relationship between phenylpropanoids and tripanocidal activity. Chalcones isolated from *Myrcia hiemales* Camb. demonstrated an inhibitory effect against the cruzaine (Deise et al., 2006; Silva, 2007). This is one of the most important cysteine-proteases in *Trypanosoma cruzi*, being essential for the parasite multiplication (Simeonov, 2008).

Several biological activities associated with flavonoids have been reported. Quercetin, the most common flavonoid detected in foods, presented antiprotocoal effects against *Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei* and *T. rhodesiense* (Camacho et al., 2002; Williamson and Finnigan,

![Figure 1](image-url)
Fig. 1. Representative high performance liquid chromatography profile of (HFPC), detection UV was at 327nm. Gallic acid (peak 1), chlorogenic acid (peak 2), caffeic acid (peak 3), rutin (peak 4), quercetin (peak 5) and kaempferol (peak 6).
Ana et al. (2010), demonstrated that quercetin and taxifolin, isolated from a hexane fraction of *Rapanea lancifolia* (Mart.) Mez, demonstrated a low trypanocidal activity. Takeara et al. (2003) evaluated the quercetin-3-methyl ether isolated of extract from *Lychnophora staavioides* Mart. (Asteraceae), demonstrating a promising potential for the use against *T. cruzi*, not affecting the blood cells.

Trypanosoma cruzi Epimastigote Susceptibility Assay

The trypanocidal activity of EEPC and HFPC is shown in Table 3. The results demonstrated that HFPC was active against the strain CL-B5 strain of *T. cruzi* with a concentration 50 µg/mL, inhibiting 71% for *T. cruzi* (EC_{50} = 73.57µg/mL). This is impressive due the fact that an EC_{50} lower than 500 µg/mL is considered clinically relevant (Rosas et al., 2007). However, the ethanol extract of *P. calomelanos* did not show a clinically relevant inhibitory activity against the epimastigote forms due its toxicity against murine macrophages.

Other plants of the Brazilian flora have shown trypanocidal activity, such as extracts and fractions of *Ampelozizyphus amazonicus* Ducke (Rosas et al., 2007), the ethyl acetate fraction of *Camellia sinensis* (L.) Kuntze (Paveto et al., 2004) and polar extracts of *Siphoneugena densiflora* O. Berg (Gallo et al., 2008).

Cytotoxic Activity

Also important in the search for active compounds with trypanocidal activity is the toxicity against mammalian host cells. J774 macrophages were utilized to evaluate the cytotoxicity and determine the selectivity of EEPC and HFPC. The results are presented in Table 2. No toxicity was observed at concentrations of 5, 12, 25, and 50 µg/mL of the hexane fraction. The HFPC showed a low toxicity against macrophages J774 when compared with Roldos et al. (2008). In this study, the semi-synthetic compound 1,4-Hydroxylunularin, a derivative hydroxybibenzyl showed a toxic effect against 18.88% of
macrophages in a concentration of 21.7 μg/mL. The hexane fraction (HFPC) of
P. calomelanos appears to be promising in the development of new drugs to
treat T. cruzi, mainly due to the low toxic effect in vitro and due the
antiepimastigote activity demonstrated in our work, indicating the necessity to
proceed with in vivo studies.

Conclusion

Our results indicate that Pityrogramma calomelanos could be a source of
plant-derived natural products with antiepimastigote activity and low toxicity,
representing an interesting alternative to other efforts to combat infectious
diseases such Chagas disease.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration (μg/mL)</th>
<th>%AE</th>
<th>%SD</th>
<th>% C</th>
<th>EC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>91</td>
<td>3.3</td>
<td>100</td>
<td>55.26</td>
</tr>
<tr>
<td>EEPC</td>
<td>200</td>
<td>77</td>
<td>3.1</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>74</td>
<td>2.7</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>HFPC</td>
<td>50</td>
<td>37</td>
<td>1.8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>71</td>
<td>1.2</td>
<td>0</td>
<td>73.57</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>67</td>
<td>0.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nifurtimox</td>
<td>12.5</td>
<td>47</td>
<td>0.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>89.1</td>
<td>3.3</td>
<td>-</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>54.9</td>
<td>0.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>45.6</td>
<td>4.2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

% AE – Percent of inhibition of epimastigote forms; % SD – Standard deviation; % C – cytotoxic
effect; EC₅₀ – Concentration with 50% of the maximum activity; EEPC (ethanol extract of P.
calomelanos), HFPC (hexane fraction of P. calomelanos).

Literature Cited

Araya, J. E., I. Neira, S. Silva, R. A. Mortara, P. Manque and E. Cordero. 2003. Diterpenoids from

Brasileiro, B. G., V. R. Pizzioilo, D. S. Raslan, C. M. Jamal and D. Silveira. 2006. Antimicrobial and
cytotoxic activities screening of some Brazilian medicinal plants used in Governador

screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-

Assessment of the antiprotozoal activity of Galphimia glauca and the isolation of new nor-

Effects of *Ageratina adenophora* on Spore Germination and Gametophyte Development of *Neocheiropteris palmatopedata*

K. M. Zhang and J. H. Liu

College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China

X. Cheng

Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China

G. F. Zhang

Yunnan University, Kunming, 650091, Yunnan, China

Y. M. Fang*

College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China

H. J. Zhang

Nanjing Forestry University, Nanjing, 210037, Jiangsu, China

ABSTRACT.—As one of the worst invasive alien plant species in China, *Ageratina adenophora* has caused serious economic losses and reduced the diversity of native species, possibly due to allelopathic interactions. However, we have little knowledge of its effects on ferns. In Petri dish bioassays, the effects of the aqueous leachates from roots, stems and leaves of *A. adenophora* on spore germination and gametophyte development of *Neocheiropteris palmatopedata* were investigated. All leachates inhibited spore germination and rhizoid growth of *N. palmatopedata*. Furthermore, the inhibitory effects increased with increasing leachate concentrations, and root leachates exhibited the greatest inhibition. Possible inhibitory causes are discussed in the present study. Additionally, the gametophytes of *N. palmatopedata* treated with the leachates of *A. adenophora* did not show morphological differences compared with the control. This result differs from previous studies investigating morphological changes in other fern species when associated with *A. adenophora*. Varying sensitivity of different fern species to the same allelochemicals of *A. adenophora* may partly be responsible for this difference.

KEY WORDS.—*Ageratina adenophora*, *Neocheiropteris palmatopedata*, spore germination, gametophyte development, allelopathic interaction

At present, there are about 170 species of terrestrial invasive plants in China. *Ageratina adenophora* Sprengel (Synonym: *Eupatorium adenophora*) (*Asteraceae*) is a very successful invasive species (Sang et al., 2010). It is native to Mexico, where it is common (Cronk and Fuller, 1995). It first invaded Yunnan Province in China in the 1940s. Since then it has intensively colonized southwest China, reduced agricultural production and strongly altered plant community structures (Wang et al., 2011). It survives and proliferates under various conditions and may

* Author for correspondence - jwu4@njfu.com.cn
adversely affect the surrounding vegetation through allelopathic effects in China (He and Liu, 1990; Song et al., 2000; Yu et al., 2004; Yang et al., 2006; Yang et al., 2008).

Most previous studies of Ageratina adenophora (Ageratina) have focused on its deleterious effects on spermatophytes (Wan et al., 2010). It excretes allelochemicals into the soil, which hinder the germination and seedling growth of potential competitors (Sang et al., 2010). However, studies of the effects of A. adenophora invasion on ferns (including gametophytes and sporophytes) have received comparatively little attention (Zhang et al., 2007; Zhang et al., 2008a, 2008b).

Yunnan is one of the richest regions in species diversity in China (Wang and Wang, 2006), with 762 documented fern species (Kunming Institute of Botany, Chinese Academy of Sciences, 2006). Our field observations showed that some ferns failed to establish in pure patches of Ageratina adenophora. Previous studies by Zhang et al. (2007, 2008a, 2008b) provide strong evidence in support of the inhibitory effects of A. adenophora on three fern species, Macrothelypteris torresiana (Gaud.) Ching, Pteris finotií Christ and Cibotium barometz (L.) J. Sm. Those studies showed that all leachates of A. adenophora inhibited spore germination and growth of the first rhizoid of the three fern species, and inhibitory effects increased with increasing leachate concentrations.

Neocheiropteris palmatopedata (Baker) H. Christ (Polypodiaceae) is endemic to China and is distributed in Yunnan, Sichuan and Guizhou. It is well known for its ornamental and medicinal value (Lin, 2000; Ding, 1982). Furthermore, in China, it is rare in the wild (Yu, 1999). Hence, understanding the biology of N. palmatopedata is of great importance for conservation purposes.

The distribution of Neocheiropteris palmatopedata overlaps with that of Ageratina adenophora in Yunnan. Allelopathic activity is more readily observed in the sensitive stage of plant growth (Petersen and Fairbrothers, 1980). In ferns, the activity is easily detected in stages such as spore germination and gametophyte development (Petersen and Fairbrothers, 1980). Hence, this study had two main objectives: (i) to determine the potential effects of A. adenophora on spore germination and gametophyte development of N. palmatopedata; and (ii) to examine the allelopathic potential of roots, stems and leaves of A. adenophora.

Materials and Methods

Plant Leachates

The effects of Ageratina adenophora leachates on Neocheiropteris palmatopedata were evaluated in three ways in this study: 1) rate of rhizoid elongation, 2) rate and percentage of spore germination, and 3) gametophyte morphology. Whole fresh plants of A. adenophora were collected from Nanjing Forestry University. The root, stem and leaf leachates were made according to Zhang et al. (2008a) and were sterilized by passing them through Duroapore® PVDF membrane (0.45 µm, Carrigtwohill, Co. Cork, Ireland). For the determination of rhizoid elongation, the sterile leachates were diluted with sterile double-distilled water to give six concentrations (0, 10, 20, 30, 40 and 50% leachate). For trials of spore germination
and gametophyte growth, the sterile leachates were diluted with B5 basal medium (Gamborg et al., 1968) containing 0.7% agar and 2% sugar to give these six concentrations. In all the trials, B5 basal medium containing 0.7% agar and 2% sugar was used as a control. All media were added at 6 mL per Petri dish (3.4 cm diameter).

Spore Collection, Incubation, Germination and Gametophyte Growth

Spores of *Neocheiropteris palmatopedata* were collected from 15–20 fertile fronds with mature but closed sporangia from 15 individuals on December 2010 in Yunnan University. The collected fronds were immediately sent to Nanjing. The fronds were unfolded, placed in clean paper bags and air dried at room temperature. Spores were collected and cleared by a mesh with pores 0.088 mm in diameter (Zhejiang Shangyu Yarn and Sieve Factory, Shangyu, China) one week later. About 2 mg of spores was packed into a 1 × 1 cm² bag made of clean filter paper. Thereafter, the spores were immersed into distilled water and washed five times in sterile water after surface-sterilizing in 5% sodium hypochlorite for 4 min. The spore suspension was prepared by adding sterile double-distilled water to the sterilized spores. Spores were inoculated evenly in each Petri dish at a density of 30 spores/cm² for the determination of rhizoid elongation and 400 spores/cm² for the trials of spore germination and gametophyte development. After inoculation, all Petri dishes were put into larger Petri dishes (12 cm diameter) to avoid desiccation and pollution. The larger Petri dishes were placed in the dark at 25 °C for 24 h and then transferred to fluorescent light (photon flux density 1×10⁴ µmol m⁻² s⁻¹) at 25 °C at 12 h light photoperiod. Five visual fields were observed in each of the Petri dishes, through a gridding ocular at a magnification of 20 × 1.5 in a microscope (No. XTS 20130, Beijing Tech Instrument Co., Ltd., Beijing, China).

Germination time was calculated as the time elapsed from sowing to the observance of the first germinated spore (i.e., when signs of a first rhizoid were evident). For each dish, fourteen days after the first observed germination, about 400 spores were selected randomly for the calculation of the germination percentage and also for gametophyte development observation. Thereafter, the germination percentage was calculated every 6 days until no further increase was detected. Data for spore germination and gametophyte assays is presented as the mean value of the three Petri dishes of each treatment.

For the determination of rhizoid elongation, after growing for 2 weeks in medium without leachate, six healthy gametophytes with uniform rhizoids in each Petri dish were selected for further observation. Afterwards, all gametophytes were treated with various leachates. One week later, length of rhizoid was recorded using a crossed ocular micrometer in a dissecting microscope (No. XTS 20130, Beijing Tech Instrument Co., Ltd., Beijing, China).

Statistics

The effects of *Ageratina adenophora* leachates on spore germination and gametophyte development of *Neocheiropteris palmatopedata* were analyzed by ANOVA using the SPSS 10.0 package (SPSS, Chicago, IL, USA).
Results

Spore Germination

Spores of *Neocheiropteris palmatopedata* germinated 12 days after inoculation in the control and continued until 35 days. Root, stem and leaf leachates of *Ageratina adenophora* delayed spore germination. The time needed for spore germination differed among treatments. Spores treated with stem leachates germinated faster than those treated with root and leaf leachates (Fig. 1). The inhibition of root, stem and leaf leachates of *A. adenophora* to spore germination percentage of *N. palmatopedata* increased with increasing concentrations (*P < 0.05*) (Fig. 2). As time went by, the germination percentages of *N. palmatopedata* treated with the root, stem and leaf leachates of *A. adenophora* went up and then leveled off (*P < 0.05*) (Fig. 2).

Rhizoid Growth

The root, stem and leaf leachates of *Ageratina adenophora* inhibited the rhizoid growth of *Neocheiropteris palmatopedata* and the inhibitory effect generally increased with increasing leachate concentrations. Root leachates were the most potent inhibitor, followed by the leaf leachates (*P < 0.05*) (Fig. 3).

Gametophyte Development

Gametophyte morphology of *Neocheiropteris palmatopedata* in the control was in agreement with the previous research carried out by Deng et al. (2009).
Fig. 2. Germination percentage of the spores of Neocheiropteris palmatopedata in the control and treated with root (A), stem (B) and leaf (C) leachates of Ageratina adenophora. Statistically significant differences among treatments are indicated by letters above or below lines based on least significant difference (LSD) multiple comparison tests. Two similar letters indicate no significant difference between treatments, and dissimilar letters indicate a significant difference between treatments ($P < 0.05$).
The gametophytes produced from the spores treated with the leachates of *Ageratina adenophora* did not show morphological differences from the control.

Discussion

Our results indicated that spore germination of *Neocheiropteris palmatopedata* was lower when treated with the root, stem and leaf leachates of *Ageratina adenophora* as compared to the control. Spore germination of *N. palmatopedata* is essential for its sexual reproduction. If this germination inhibition also occurs in nature, where spores of *N. palmatopedata* overlap with plants of *A. adenophora*, these leachates could potentially drastically decrease the abundance of this plant in the community. The delay in germination of *N. palmatopedata* spores could severely affect the competitive ability of this fern species for resources.

All leachates of *Ageratina adenophora* inhibited rhizoid growth of *Neocheiropteris palmatopedata*. Furthermore, the inhibitory effects increased with the increasing leachate concentrations. It is generally believed that the rhizoids of fern gametophytes function as organs of uptake and absorption. Inhibition of *N. palmatopedata* rhizoid growth by the root, stem and leaf leachates could reduce the ability of gametophytes to absorb water and nutrients, which could affect the production and potential growth of the future sporophyte and its function in the community. Racusen (2002) demonstrated that rhizoids were the primary site of uptake for monovalent cations in the gametophytes of *Onoclea sensibilis* L. Kamachi *et al.* (2005) showed that *Athyrium* gametophytes had the ability to
accumulate lead in the rhizoids. Therefore, we hypothesize that the active component(s) in the root of *A. adenophora* entered and accumulated in the rhizoids of *N. palmatopedata*, which inhibited the rhizoid elongation of *N. palmatopedata*.

In this study, the gametophytes produced from the spores of *N. palmatopedata* treated with the leachates of *A. adenophora* did not show morphological differences when compared with the control. However, in a study of *Macrothelypteris torresiana*, the rhizoids of the young gametophytes treated with various root leachates of *A. adenophora* were erect, curved, or swollen and the curving and swollen rhizoids increased with the increasing concentrations of *A. adenophora* (Zhang *et al.*, 2008a). The gametophytes from the spores of *Pteris finotii* treated with higher concentrations of root leachates of *A. adenophora* suffered morphological changes (Zhang *et al.*, 2007). This difference might be attributed to differences in sensitivity to the same allelochemicals.

In our experiments, greater inhibitory effects on gametophyte development of *N. palmatopedata* occurred with the root leachates of *A. adenophora*, as compared to stem and leaf leachates. This result was consistent with previous studies, which showed that the root leachates resulted in greater inhibition than the stem and leaf leachates (Zhang *et al.*, 2007; Zhang *et al.*, 2008a; Tripathi *et al.*, 1981). However, He and Liu (1990) observed that the aqueous leaf extracts of *A. adenophora* were the most allelopathic to the seed germination of four plants. Tripathi *et al.* (1981) also reported that the aqueous extracts of different parts of *A. adenophora* caused different effects on other plants. This difference might due to the differences in the sensitivity to same allelochemicals, concentration of the allelochemicals, or variations in allelochemicals among the tissues. The leachates of *A. adenophora* were identified as phenolic compounds (Yang *et al.*, 2006), which might act as the allelopathic substances (Kim *et al.*, 2005). Further investigation is needed to better understand the chemistry of the allelopathic activity.

Sustainable management of *A. adenophora* in China includes ecological restoration by competitive replacement of *A. adenophora* and biological control agents against *A. adenophora* (Wan *et al.*, 2010). Future efforts will concern the effective control of *A. adenophora* as well as its utilization.

ACKNOWLEDGMENTS

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Planned Projects for Postdoctoral Research Funds (1001078C) and China Postdoctoral Science Foundation funded project (20100481152).

LITERATURE CITED

Occurrence of Dark Septate Endophytes in the Sporophytes of *Christella dentata*

Rebeca Ghanta, Sikha Dutta*, and Radhanath Mukhopadhyay

Department of Botany, UGC Centre For Advanced Study, The University of Burdwan, Burdwan-713104, West Bengal, India

ABSTRACT.—Mycorrhizal fungi form dynamic symbiotic association in the roots of about 80% of the total terrestrial vascular land plants. Among the pteridophytes, mycorrhizal associations are more frequent in the gametophytes than in the sporophytes. Gametophytes of many ferns and lycophytes exhibit obligate mycotrophy. Despite several benefits derived from the mycorrhizal fungi, very little work has been done surveying the distribution and diversity of arbuscular mycorrhizal (AM) fungi in pteridophytes. We intensified our studies in the roots of sporophytes of *Christella dentata* (Forssk.) Brownsey & Jermy (Thelypteridaceae) to understand the distribution of AM fungi in different parts of the main adventitious root and its lateral branches, along with percent root colonization. We also evaluated spore density of AM fungi in the soil and seasonal variations in the hyphal colonization and formation of vesicles and arbuscules. Root colonization was present in the lateral roots only and not on the main adventitious roots. Percent root colonization also varied in different parts of the lateral roots. The results indicated that root colonization percentage of AM mycorrhizal fungi varies not only by the growth stages of host plants but also by season. Soil spore count was highest in the winter and lowest during the rainy season. In addition to AM fungi, another type of root colonizing fungi, dark septate fungi (DSF) or dark septate endophytes (DSE), has also been recorded in the roots of *C. dentata*. Dark septate fungi with melanized hyphae and microsclerotia were documented.

KEY WORDS.—*Christella dentata*, arbuscular mycorrhizae, dark septate fungus, *Glomus* sp

In addition to arbuscular mycorrhizal fungi (AMF), another type of root colonizing fungi, dark septate fungi (DSF), has been reported within the roots of different seedless vascular plants (Cooper, 1976; Berch and Kendrick, 1982; Dhillion, 1993; Jumpponen and Trappe, 1998). Dark septate fungi are defined by Jumpponen (2001) as conidial or sterile fungi that colonize living plant roots without causing any apparent negative effects. The ecology, taxonomic affinities and host range of these DSF are largely unknown, as is their influence on the host and plant communities (Peterson et al., 2004). However, evidence exists showing that DSE fungi can, under some environmental or experimental conditions, enhance host growth and nutrient uptake, hence functioning in a manner typical of mycorrhizal associations (Mandyam and Jumpponen, 2005). If it is accepted that mycorrhizal fungi cause host responses mainly mutualistic with long-term fitness effects, the DSE association should be included when the diversity of mycorrhizal symbioses and responses are considered. Including DSE in mycorrhizal studies would yield valuable information about the importance and frequency of these root colonizers (Jumpponen and Trappe, 1998). Hence, in the present study, an attempt has been made to investigate

*Corresponding author: E mail. Sikhabu_bot@yahoo.com
the association of DSE and AM in the roots of a common pteridophyte, Christella dentata (Forssk.) Brownsey & Jermy to understand the diversity of fungal root endosymbionts in this plant.

Materials and Methods

Christella dentata, a common terrestrial fern in the plains of India, grows in broad ecological conditions. Ten young and 10 mature sporophytes were collected from Onda, Bankura district of West Bengal, India at latitude 23°14’N and longitude 87°14’E in each of the three different seasons: winter (November to February), late spring to summer (March to May) and rainy season or monsoon (June to October) for two consecutive years: 2008 and 2009.

Roots were collected by digging and uprooting the whole plant along with the rhizospheric (root region) soil. Root samples were thoroughly washed in running tap water and rootlets were selected. The average root length of the main adventitious root system was measured to be 10.00–11.33 cm. Then, the root system was grouped into two categories: main roots and lateral roots. Each of the root categories was divided into three equal portions: the distal, the middle and the basal portions to determine the variation of mycorrhizal colonization in different regions of the root. Each was cut into small pieces (1 cm in length) and fixed in formaldehyde acetic acid solution (Johansen, 1940) and stored at 4°C.

About 10 g of soil were collected from the rhizosphere of C. dentata by digging the soil up to a depth of 15 cm. The soil that adhered to the uprooted roots was separated and added to the soil collection. The total soil collected from around each sporophytic plant of C. dentata was kept in separate polythene packets, labeled and stored at 4°C until analysis. Three such soil samples were collected in each season.

Root samples were stained following the method of Phillips and Hayman (1970). For each specimen, 100 root pieces from each of the samples were thoroughly washed in water and boiled at 95°C for 1 hour in 10% KOH. The root segments were washed in distilled water, acidified with 1(N) HCl for 5 minutes and stained in 0.05% trypan blue in acidic glycerol for overnight. The excess colorant was removed by washing with 10% glycerol. Root segments were mounted on slides in acetic acid and glycerol (1:1 V/V) and the edges of the cover slips were sealed with DPX and observed under microscope (Leica, model no. DMLB).

The mycorrhiza type present in the root samples was determined according to the method of Harley and Smith (1983). Arbuscular mycorrhizae were examined in the root samples as percent mycorrhizal association and was calculated as follows:

\[
\% \text{Mycorrhizal association} = \left(\frac{\text{No. of mycorrhizae associated segments}}{\text{Total No. of segments scored}} \right) \times 100
\]

Ten grams of soil was dissolved in 100 ml of distilled water in a conical flask. The conical flask was shaken for 30 min and then kept in undisturbed condition for 30 min. The soil particles precipitated and the spores floated on the surface of the liquid. Mycorrhizal spores were obtained by wet sieving and decanting technique as followed by Gerdemann and Nicolson (1963).
The soil solution was passed through 350, 300, 53 and 45 μm sieves and the spores were collected from the residue deposited on the sieves. For this, residue present on the sieve was dissolved first in distilled water and then filtered with filter paper. The residue present in the filter paper was taken and mounted on a slide in lactophenol and cotton blue and was examined under a microscope (Leica, model no. DMLB). The decantant was filtered through a filter paper with grid lines. The filter paper was then spread on a glass plate under a dissecting microscope and spores were counted and expressed as spores per 100 g of dry soil.

The prepared root samples (trypan blue stained) were also examined for septate hyphae and microsclerotia corresponding to DSE under a Leica microscope. The mature microsclerotia were allowed to germinate and grow in different media viz. potato dextrose agar medium, Saberoud medium and malt agar medium. The roots containing mature microsclerotia were surface sterilized and put in potato dextrose agar medium at pH 6.5 and incubated for 30 days for germination of the microsclerotia and to develop the fresh culture of the dark septate endophytic fungus.

Results

The root samples showed the presence of DSE. The septation of the dark septate endophytic fungal hyphae was very prominent and visible even with a very light stain of trypan blue (Fig. 1A). The colonization percentage of DSE was highest in winter to spring and lowest in the rainy season (Table 1). The DSE with microsclerotia (Fig. 1B, C) of different shapes and sizes were highly melanized. The immature microsclerotia (Fig. 1B) took the stain of trypan blue and appeared light blue in color and with maturity the cell wall became thicker and the degree of melanization increased. The microsclerotia were without definite shape, often grew together with the mycelium and remained embedded in the mycelium, bound together with the mycelial strands. Mature microsclerotia (Fig. 1C) did not show well-developed zones of tissue. They were made up of central part made up of pseudoparenchymatous tissue but the hyphal nature exists. Towards the outside of the microsclerotia the hyphae were more loosely arranged.

Upon culturing, branched, dark-colored septate hyphae of the DSE developed, showing small constrictions at branch points. The pure culture of the DSE developed after 30 days of incubation and it was observed that the potato dextrose agar (PDA) medium was most suitable at an optimum pH of 6.5. In culture, microsclerotia developed, the sclerotal initials were found to arise by branching and septation of hyphae. The cells became barrel shaped and considerably wider than the vegetative hyphae, dark brown to reddish – brown in color and was identified as *Rhizoctonia* spp.

Arbuscular mycorrhizae were found in all the lateral root samples studied (Table 1). Both arbuscules (Fig. 2A & B) and vesicles (Fig. 2E) were seen in the roots of *C. dentata*. The number of vesicles was less than the number of arbuscules. The vesicles were large, measuring 38 to 56 μm in diameter, oval to round in shape.

The aseptate hyphae of arbuscular mycorrhizal fungi grew parallel to each other. As the roots were grouped into two categories, main roots and lateral
roots, they were studied separately and it was evident that the main roots in all the cases showed no mycorrhizal colonization. In contrast, the lateral roots in almost all the cases exhibited mycorrhizal colonization. Percentage of colonization was higher in mature lateral roots (24 to 58.5%) than in young lateral roots (11 to 29%). However, it was noticed that in young plants, the distal portions of the lateral roots had greater mycorrhizal colonization whereas, in mature plants, the basal portions of the lateral roots showed more hyphae and arbuscules. The number of arbuscules and the colonization of aseptate mycorrhizal hyphae was highest in winter and lowest in the rainy season (Table 1). No vesicles were found in young plant roots. Only the mature plant roots possessed vesicles (Fig. 2E) in very low frequency (0.1 to 0.7%).

The root samples of C. dentata presented the Paris- type of AM colonization (Fig. 2A & B) as the arbuscules, vesicles and intraradical, non-septate hyphae of mycorrhizal fungi were intracellular.
Table 1. Colonization of vesicular arbuscular mycorrhizae and dark septate fungi in roots of Christella dentata.

<table>
<thead>
<tr>
<th>Plant growth stage</th>
<th>Season of collection</th>
<th>Portion of lateral root</th>
<th>Mycorrhizal colonization</th>
<th>DSF colonization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percentage of hyphae</td>
<td>Percentage of vesicle</td>
</tr>
<tr>
<td>MATURE PLANT</td>
<td>Winter</td>
<td>Tip</td>
<td>18</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Late spring to summer</td>
<td>Tip</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Rainy</td>
<td>Tip</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>YOUNG PLANT</td>
<td>Winter</td>
<td>Tip</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>18.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Late spring to summer</td>
<td>Tip</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rainy</td>
<td>Tip</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

*Data are the mean values of ten replicates
Spore (Fig. 2C, D) counts per 100 g of soil showed 550 ± 10.44 spores in the winter season, 370 ± 9.89 spores in the late spring to summer, and 210 ± 11.30 spores in the rainy season. The AM fungus has been identified as *Glomus* sp.

DISCUSSION

In this paper, we report occurrence of *Glomus* sp. as arbuscular mycorrhizal fungus in the lateral roots of *Christella dentata* along with dark septate endophytes (DSE), which has been identified as *Rhizoctonia* sp. The arbuscular mycorrhizal fungus *Glomus* was characterized by the formation of large swollen vesicles, well developed arbuscules and extraradical round spores. Though *Glomus* and *Sclerocystis* have been reported earlier by Muthukumar and Udaiyan (2000) as AM in *Christella dentata*, to the best of our knowledge this is the first report of presence of DSE in *Christella dentata* along with microsclerotia.

Mycorrhizal colonization pattern was found to be of *Paris*-type in *Christella dentata* (Fig. 2 A–C). This finding is in conformity with the observations of other studies where this morphotype has been found in other pteridophytes (Zhang et al., 2004; Dickson, 2004; Zubek et al., 2010) and the percent root colonization by AMF varies with the host plants and the habitats have been shown by a number of authors (e.g., Muthukumar and Udaiyan, 2000; Zubek et al., 2010).
Zubek et al. (2010) recorded highest AM colonization (M=78%) and arbuscule richness (A = 76%) in Thelypteris patens (Sw.) Small and lowest AM colonization and arbuscule abundance in Stichorus underwoodianus (Maxon) Nakai (M= 4%, A = 3%). Muthukumar and Udayian (2000) showed the intensity of mycorrhizal colonization was significantly influenced by the type of substrate in which the plants grow. Pteridophytes growing in soil (terricolous) had the highest mean colonization levels followed by lithophytic and epiphytic species. As we have studied only one terrestrial member, we are not in a position to compare the result of mycorrhizal colonization in different habitats. However, we have noted that percentage of AM colonization varies not only on the growth stages (young / mature) of host plants but also with the seasonal variations of the year. We found the highest mycorrhizal colonization (58.5 ± 1.10) and spores and arbuscule formations in Christella dentata in the winter months and the lowest in the rainy season (Table 1). No vesicles were observed in the rainy season. In summer, there was much less vesicle formation (0.1 0 ± 0.01) than in winter (0.7 ± 0.1). Mycorrhizal colonization was moderate in the summer months. In young lateral roots mycorrhizal colonization percentage was always less than that of the mature roots (Table 1).

It is assumed that the vesicles, being the storage organs of the AM, are generally produced at comparatively later stages of growth (Powell and Bagyaraj, 1984). Bajwa et al. (2001), while surveying AM association in wetland plants, noticed that vesicular infection, in general, started in spring and reached its maximum in summer, autumn or winter depending upon the host species. Another possible reason for the disparity in the pattern of AM development may correspond to variations in stages of completion of life cycles of various AM species involved in forming this association. In a survey on AM association in different vascular plants it was found that colonization remained stable during spring to summer and maximum colonization has been observed during winter (Bajwa et al., 2001). The spore population in association with dicotyledonous species remained consistently high except for a decline in autumn. These results corroborate our present findings on C. dentata where AM colonization percentage in the roots and spore number in the soil was highest in winter.

Acknowledgements

We thank Mr. Kaushik Sarkar for helping in microscopic photography.

Literature Cited

GHANTA ET AL.: DARK SEPTATE ENDOPHYTES IN CHRISTELLA DENTATA

Azolla cristata in the Kashmir Himalaya

BURHAN AHAD*, ZAFAR A. RESHI, and AJIAZ H. GANAIE
Department of Botany, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
A. R. YOUSUF
Department of Environmental Sciences University of Kashmir, Srinagar-190006, Jammu and Kashmir, India

ABSTRACT.—The identity of Azolla species in the Kashmir Valley has been confusing, with most populations being reported as Azolla pinnata. Morphological evidence demonstrates that the species introduced to Kashmir is not A. pinnata, but rather Azolla cristata, a new species for the Kashmir Valley and a potentially problematic biological invader.

KEY WORDS.—Azolla caroliniana, Azolla cristata, Azolla filiculoides, Kashmir Valley, invasive species

The genus Azolla Lam. consists of small, free-floating aquatic ferns, which are invasive in many parts of the world (Garcia-Murillo, 2007), including the Kashmir Valley, where Azolla is one of the most prolific invasive alien taxa of aquatic ecosystems (Fig. 1A). The species of Azolla that grows in Kashmir has been previously reported as Azolla pinnata R. Br. (Mir and Pandit, 2008), referring to the native Indian taxon A. pinnata subsp. asiatica R.M.K. Saunders & K. Fowler. A detailed study of vegetative and reproductive characters of Azolla specimens collected from several water bodies in Kashmir Valley revealed that this species has been incorrectly identified and is, instead, A. cristata Kaulf.

MATERIALS AND METHODS

Fresh specimens with sporocarps were collected from five different water bodies of the Kashmir Valley, and deposited in Kashmir University herbarium, KASH (Table 1). Additional material from this herbarium was examined under a stereomicroscope (Zeiss, Discovery V8) and optical trinocular microscope (Leica DMLS2). The branching pattern and leaf trichomes were observed by immersing fresh plants in 95% ethanol for 1 hour. The leaves were then rinsed with water and immersed in concentrated bleaching solution under vacuum for 15 minutes, again rinsed with water, then mounted in lactophenol and observed under the microscope. The structure of glochidia was observed by immersing dry microsporangia in water:ethanol:glycerol (1:1:1) solution for 24 hours. The massulae were then dissociated by gently squashing them under a cover glass. Samples for Scanning Electron Microscopy (SEM) were fixed with 3% glutaraldehyde in 0.2 M phosphate buffer of pH 7.4. The samples

*Corresponding author: burhanahad@gmail.com, burhanahad@rediffmail.com
were then fixed in 1% osmium tetraoxide, and graded in acetone series. Fixed samples were dried by critical point method in dry carbon dioxide and examined under the SEM (Hitachi S3000-H).

RESULTS AND DISCUSSION

The plants are free-floating, up to 4 cm long, and polygonal in shape. Sporophytes consist of a thin axial stem, bearing small leaves and delicate brown rootlets up to 6 cm long. Leaves are alternate, imbricate, and bilobed; the hyaline ventral leaf lobe and an aerial chlorophyllous dorsal lobe are covered with short bicellular trichomes and bear an extracellular cavity housing filamentous *Anabaena* (Figs. 1B and 1C). Rootlets are solitary, from stem branching points. Sporocarps are borne in pairs at the base of branches. Microspores are aggregated in stalked massulae, massulae with arrow shaped glochidia (Figs. 2A and 2B). Megasporocarps contain a solitary megaspore; megaspore apparatus with three floats, and granular perine (Fig. 2C).

To understand the identification of these plants that were earlier misidentified as *A. pinnata* in the Kashmir valley (a species of section *Rhizosperma*, characterised by hookless glochidia and megaspore apparatus with nine floats) a short background in *Azolla* taxonomy is necessary. One of the earliest classifications of *Azolla* section *Azolla* by Mettenius (1847) recognized four

Table 1.

<table>
<thead>
<tr>
<th>Site</th>
<th>Elevation</th>
<th>Coordinates</th>
<th>Voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchak Lake</td>
<td>1584</td>
<td>34.23°N, 74.90°E</td>
<td>Reshi & Ahad 2103</td>
</tr>
<tr>
<td>Dal Lake</td>
<td>1584</td>
<td>34.60°N, 74.80°E</td>
<td>Ahad & Ganaie 2102</td>
</tr>
<tr>
<td>Hokersar wetland</td>
<td>1500</td>
<td>34.05°N, 74.43°E</td>
<td>Reshi & Ahad 2105</td>
</tr>
<tr>
<td>Manasbal Lake</td>
<td>1584</td>
<td>34.15°N, 74.41°E</td>
<td>Ahad & Ganaie 2104</td>
</tr>
<tr>
<td>Wular Lake</td>
<td>1580</td>
<td>34.20°N, 74.44°E</td>
<td>Reshi & Ahad 2101</td>
</tr>
</tbody>
</table>
species: A. cristata Kaulf, A. caroliniana non Willd., Azolla magellanica Willd. (syn. Azolla filiculoides Lam.) and A. microphylla non Kaulf. Mettenius (1867) reduced the New World species number to two by combining A. microphylla, A. caroliniana and A. cristata into A. caroliniana and at the same time placing A. magellanica and A. rubra into A. filiculoides Lam. Strastburger (1873) upheld the later Mettenius taxonomy and recognised only two species of section Azolla: A. caroliniana and A. filiculoides, which he distinguished on the basis of bicellular trichomes and granular perine present in the former species and unicellular trichomes and warty perine present in the latter. The most widely accepted classification of section Azolla is currently that of Svenson (1944), however, who returned to a four-species system: Azolla caroliniana Willd., A. filiculoides Lam., A. microphylla Kaulf. and A. mexicana Presl. Recent reassessments of species limits in Azolla have found that taxonomic treatment to be unsatisfactory (Dunham and Fowler, 1987; Zimmerman et al., 1989, 1991; Pereira et al., 2001; Evrard and van Hove, 2004). These authors have shown that earlier circumscriptions of these species were based on misapplied names, including the fact that the types of A. caroliniana and A. microphylla are indistinguishable from the oldest name in the group, A. filiculoides. The taxon frequently treated as A. caroliniana sensu Mettinius, then, needs a name, and the oldest available is A. cristata. Compounding this confusion is the natural variation present in these species, and noticeable environmental plasticity among the populations (Zimmerman et al., 1989; Pereira et al., 2001). Zimmerman et al. (1989) demonstrated that in section Azolla, A. filiculoides was easily distinguishable from the other taxa on the basis of leaf trichome morphology and enzyme electrophoresis pattern. Zimmerman et al. (1991) suggested that the taxa frequently treated as A. microphylla, A. mexicana and A. caroliniana be regarded as a single species, on the basis of RFLPs, isozymes, phosphorus deficiency symptoms and breeding experiment analysis. These results thus agree perfectly with the existence of two species in section Azolla, as advocated by Evrard and Van Hove (2004). One is A. cristata Kaulf., which includes A. caroliniana non Willd., A. mexicana Presl and A. microphylla non Kaulf.; the other species is A. filiculoides Lam. (including A. rubra R. Br., often recognized at the rank of variety).
Following this taxonomy, all plants examined were *Azolla cristata*, on the basis of the presence of bicelled trichomes, hook shaped, multisepate glochidia, and a 3-float megaspore apparatus with a granular perine surface (Figs. 1C, 2B and 2C). It is possible that *A. filiculoides* is also present in the Kashmir Valley (as an introduction), although we know of no documented occurrences; populations of *Azolla* section *Azolla* should be carefully examined to determine which species is involved.

ACKNOWLEDGMENTS

The authors highly acknowledge the help of Prof. Charles van Hove, Emeritus Professor, Catholic University of Louvain, and Prof. I. Watanabe who confirmed our identifications. The authors also take the opportunity to thank Carl Rothfels (Associate Editor), Christopher Fraser-Jenkins, and an anonymous reviewer for their helpful comments.

LITERATURE CITED

New Country and Regional Records from the Brazilian Side of Neblina Massif.—A list of 37 species is reported here for the first time to the Brazilian side of Neblina Massif: one of the largest sandstone mountains of the western portion of the Guyana Shield along the Venezuelan-Brazilian border. Twenty-seven species represent new additions to the Brazilian Fern Flora (marked with an asterisk) and ten species are the first record to the northwestern portion of the Brazilian Amazon with their closest known Brazilian populations from the Atlantic Rainforests (marked with two asterisks). We provide information on previous geographic ranges and full specimen citation including habit, habitat, and elevation for all taxa.

The specimens were collected by the first author during an expedition to the Cachoeira do Anta (Anta waterfall), Amazonas, Brazil, at the southeastern part of Neblina massif from 24 December 24, 2003 to January 5, 2004. The expedition began at the foot of the Serra da Neblina, from the mouth of the Tucano River (0°37'14"N, 65°55'29.5"W, 50 m elevation) to the top of the Anta waterfall (0°51'20.3"N, 65°56'30.1"W, 2400 m elevation).

The botanical novelties presented here illustrate how the Brazilian side of the Guyana shield is relatively understudied compared to its neighboring areas in Venezuela. All specimens were fixed in 70% ethanol in the field and dried about a month after in an oven at 60°C. A complete set of vouchers is housed at the Herbarium of the Institute for Amazonian Research (INPA) in Manaus, Brazil, with duplicates (when available) sent to the Herbarium of the Federal University of Minas Gerais (BHCB).

Asplenium harpeodes Kunze—Carvalho et al., 351. Epiphyte. Cloud forests, 2300 m. Distributed from Mexico to Brazil where it was previously known only from the Atlantic Rain Forest in Brazil.

Asplenium raddianum Gaudich.—Carvalho et al., 341. Epiphyte. Upper montane forest, 1900 m. Previously known from Colombia, Venezuela, Ecuador, Peru, Bolivia and Brazilian Atlantic Forest.

Blechnum schomburgkii (Klotzsch) C. Chr.—Carvalho et al., 380. Terrestrial. Tepui flat summit near rocks, 2300 m. Distributed from Costa Rica to Bolivia and southeastern Brazil.

Ceradenia capillaris (Desv.) L. E. Bishop—Carvalho et al., 384. Rocks crevices along Rio Anta. Rocky outcrop, 2400 m. Previously known from Cuba, Jamaica, Hispaniola, Colombia, Venezuela, Ecuador, Peru, Bolivia, and the Atlantic forest in southeastern Brazil.
Cochlidium connellii (Baker ex C. H. Wright) A. C. Sm.—Carvalho et al., 383. Rocky crevices along Rio Anta, growing with mosses. Rocky outcrop, 2300 m. Previously known only from Guyana and Venezuela.

Cyathea vel aff. aurea Klotzsch—Carvalho et al., 344. Terrestrial. Fruticose meadows, 2300 m. The range of this taxon is from the Cordillera de la Costa in Venezuela along the northern Andes in Colombia, probably reaching northern Ecuador.

Cyathea gracilis Griseb.—Carvalho et al., 347. Terrestrial. Fruticose meadows, 2200 m. Previous records are from Costa Rica, Panama, Jamaica, Colombia, Ecuador, and northern Peru.

Cyathea marginalis (Klotzsch) Domin—Carvalho et al., 385. On rocks near stream. Rocky outcrop, 2300 m. It is widespread in the Guayana shield from French Guiana to Venezuela.

Cyathea neblinae A.R. Sm.—Carvalho 308, 320. Terrestrial. Montane forests, 1300 m. Endemic from Neblina massif. Previous known from Venezuela.

Cyathea sipapoensis (R. M. Tryon) Lellinger—Carvalho et al., 335. Terrestrial. Upper montane forest, 1700 m. Previously known only from Cerro Sipapo (Venezuela), 550 km from Serra da Neblina.

Cyathea spectabilis (Kunze) Domin—Carvalho et al., 249. Terrestrial. Montane forests, 1100 m. Previous records are from Panama, Colombia, Venezuela, Guyana, Suriname, and French Guiana. The closest record of this species is from Serranía de Imataca, Venezuela, about 850 km from Sierra de la Neblina.

Cyathea steyermarkii R. M. Tryon—Carvalho et al., 237. Terrestrial. Montane forest, 1000 m. Previously known only from Cerro Autana (Venezuela), 490 km from Serra da Neblina.

Diplazium centripetale (Baker) Maxon—Carvalho et al., 304. On rocks along stream. Montane forest, 1300 m. Previously known from the Antilles, Venezuela, and Trinidad.

Elaphoglossum crispatum Mickel var. beitelii Mickel—Carvalho et al., 293. Epiphyte. Montane forests, 1300 m. Endemic to Serra da Neblina. Previous records from Venezuela.

Elaphoglossum wurdackii Vareschi—Carvalho et al., 337. Epiphyte in fallen branch. Upper montane forests, 1700 m. Previously known only from Venezuela.

Enterosora trichosora (Hook.) L. E. Bishop—Carvalho et al., 354. Epiphyte. Cloud forest, 2300 m. *Enterosora trichosora* is a rarely collected but widespread species with about ten known collections, including three from the Venezuelan side of Serra da Neblina (Alan Smith, pers. comm.). Previously known from Mexico, Guatemala, Costa Rica, Ecuador, and Peru. The nearest published record prior to this one is from the Andes in Quito, Ecuador, 1400 km far from Serra da Neblina.

Enterosora parietina (Klotzsch) L. E. Bishop—Carvalho et al., 368. Epiphyte. Cloud forests, 1900 m. Previously known from Central America, Antilles, Colombia, Ecuador, Peru, and Venezuela.

Gramnitus perithnundi L. E. Bishop & A. R. Sm.—Carvalho et al., 339. Epiphyte. Upper montane forests, 1800 m. Previously known only from Venezuela.

Hymenophyllum karstenianum J. W. Sturm—Carvalho et al., 338. Epiphyte on fallen branch. Upper montane forests, 1800 m. Previously known only from Venezuela and Peru.

Hymenophyllum lindenii Hook.—Carvalho et al., 355, 361, 394. Epiphyte. Upper montane forests, 1900 m, and Cloud forests, 2300 m. Previously known only from Colombia, Venezuela, and Peru.

Lindsaea arcuata Kunze—Carvalho et al., 329. Terrestrial. Montane forest, 1500 m. Previously known from Venezuela, Colombia, Guyana, Suriname, French Guiana, and from the Atlantic forests in southern and southeastern Brazil.

Lindsaea cultriformis K. U. Kramer—Carvalho et al., 291. Terrestrial. Montane forest, 1300 m. Previously known only from Colombia and Venezuela. The nearest record of this species is from Cerro Aratitiyope about 200 km from Serra da Neblina.

Lycopodiella steyermarkii B. Ollg.—Carvalho et al., 348. Terrestrial. Fruticose meadows, 2300 m. Previously known from Costa Rica, Panama, Colombia, Venezuela, and Ecuador.

Polyphlebium diaphanum (Kunth) Ebihara & Dubuisson—Carvalho et al., 396. Epiphyte. Cloud forests, near streams, 2300 m. *Polyphlebium diaphanum*
occurs from Mexico to Brazil. Previous records in Brazil are from the Atlantic forest region.

Polypodium aturense Maury—*Carvalho et al.*, 319. Arching epiphyte. Montane forest, 1300 m. Previously known only from semideciduous forests in Venezuela, 100–400 m.

Serpocaulon sessilifolium (Desv.) A. R. Sm.—*Carvalho et al.*, 377. Epiphyte. Semideciduous forest, 2400 m. Previously known from Costa Rica, Colombia, Venezuela, Ecuador, Peru, and Bolivia. The nearest record is from Cerro Marahuaca, Venezuela, about 300 km from Serra da Neblina.

Stenogrammitis jamesonii (Hook.) Labiak—*Carvalho et al.*, 343, 357. Epiphyte. Upper montane forest, 2000 m; and Cloud forests, 2300 m. Previously known from Guatemala, Costa Rica, Venezuela, Colombia, Ecuador, Peru, and Bolivia.

Stigmatopteris longicaudata (Liebm.) C. Chr.—*Carvalho et al.*, 324. Terrestrial. Montane forest, 1300 m. Previously known from Mexico to Bolivia including Venezuela and French Guiana.

Terpsichore asplenifolia (L.) A. R. Sm.—*Carvalho et al.*, 363. Epiphyte. Cloud forest, 1900 m. Previously known from Mexico, Antilles, Mesoamerica, Colombia, Venezuela, Ecuador, Peru, Bolivia, and Atlantic forest in northeastern Brazil.

Terpsichore taxifolia (L.) A. R. Sm.—*Carvalho et al.*, 244. Epiphyte on moss-covered trunk. Montane forest, 1100 m. Previously known from Costa Rica, Panama, Antilles, Colombia, Venezuela, Guyana, Suriname, Ecuador, Peru, Bolivia, and Atlantic forest in Brazil. The nearest record for this species is from Cerro Duida, Venezuela, about 300 km from Serra da Neblina.

Trichomanes caliginum Lellinger—*Carvalho et al.*, 278. On rocks along stream. Montane forests, 1300 m. Previously known from Venezuela, Guyana, and Suriname. The nearest record of this species is from Cerro Marahuaca, about 325 km from Serra da Neblina.

Trichomanes dactylis Sodiro—*Carvalho et al.*, 346. Terrestrial. Cloud forests, 1900 m. Previously known from Panama, Colombia, Venezuela, and Ecuador.

Trichomanes robustum E. Fourn.—*Carvalho et al.*, 333. Epiphyte on moss-covered trunk. Upper montane forest, 1700 m. Previously known from Antilles,
Venezuela, Colombia, Ecuador, and Brazil. Prior Brazilian records are from the Atlantic Forest, northeastern Brazil.

Thelypteris gardneriana (Baker) C. F. Reed—Carvalho et al., 358, 395. Terrestrial near stream. Cloud forest, 2300 m. Previously known from Venezuela, Colombia, Ecuador, Peru, Bolivia, and southern and southeastern Brazil.

We thank the Yanomamis from Maturacá who allowed the first author to collect in their area. We thank the following researchers who have helped with the identifications and providing information on rare species: Dr. Alan Smith (Enterosora) and Dr. Marcus Lehnhert (Cyathea). Financial and logistic support was provided by the National Park of Pico da Neblina, ICMBio/MMA/Brazilian Government. The third author received financial support from PROTAX (MCT/CNPq/MEC/CAPES N° 52/2010) during the production of this manuscript.—FERNANDA ANTUNES CARVALHO, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Botânica, Av. André Araújo 2936, Manaus, Amazonas, 69060-001, Brazil; ALEXANDRE SALINO, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Caixa Postal 486, Belo Horizonte, Minas Gerais, 30123-970, Brazil; and CHARLES EUGENE ZARTMAN, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Botânica, Av. André Araújo 2936, Manaus, Amazonas, 69060-001, Brazil.
Shorter Notes

New Records Of Ferns From Chiapas, Mexico.—As part of an Inventory of Pteridophytes of the Biosphere Reserves of “El Triunfo” and “La Sepultura” in the Sierra Madre and of the deciduous tropical forest in the Jiquipilas Valley in the Central Depression of Chiapas, Mexico, as well as explorations in other areas of this state between 1998 and 2003, five fern species previously were reported for Chiapas: *Hemionitis leyi* and *Doryopteris concolor* var. *concolor* (Amer. Fern. J. 90:104-111. 2000); *Thelypteris rachiflexuosa* (Sida 20:1309-1313. 2003), *Elaphoglossum ipshookense* and *Anemia guatemalensis* (Amer. Fern J. 93:152-163. 2003). These were determined as new records for the state by comparison to those taxa reported from Chiapas by Mickel and Smith (Mem. New York Bot. Gard. 88:1–1054. 2004). Subsequent explorations of other physiographic regions of Chiapas have resulted in the discovery of the following five additional new records for Chiapas.

These new records are confined to physiographic regions of Chiapas such as the Central Depression, Northern Highlands, and Sierra Madre of Chiapas. The Central Depression is important as a biological corridor to all dry forest in southern Mexico and to the Yucatan Peninsula, according to Rzedowski and Calderon de Rzedowski (Florist. Invent. Trop. Country. New York Bot. Garden: 273.1989), and the Northern Highlands region is important because it is considered part of the Mesoamerican biological corridor (CI & CAP. Northern Region Mesoamer. Biodiver. Hotspot. 2004)

The Central Depression is a great valley located between the Sierra Madre and the Northern Highlands of Chiapas (Müllerried, La Geografía de Chiapas. 1957). This valley is dominated by deciduous tropical forest, and few botanical studies have been conducted in this area (La Veg. Chis. Vol. 1. 7. 1952). It has been considered an important zone for endemic taxa (Reyes, List. Florist. Mex. XVII. Dep. Central Chis. 1997). The Northern Highlands is a mountainous region located between the Central Depression and Gulf Coastal Plain of Chiapas, and is dominated mainly by tropical rain forest and *Quercus* forest. This area is poorly known botanically. The Sierra Madre is located between the Pacific Coastal Plain and the Central Depression (La Geog. Chis. 1957), and is dominated by montane cloud forest. Several floristic studies have shown this area to be rich in vascular plant diversity (Long and Heath, Ann. Inst. Biol. Ser. Bot. 6. 1990; Matuda, Amer. Mid. Nat. 43:195-223. 1950). Unfortunately, all of these areas are becoming heavily deforested and altered due mainly to anthropogenic activities such as cattle ranching, and coffee and maize plantations.

New Records

Adiantopsis seemannii (Hook.) Maxon—Mexico, Chiapas, Mpio. Tonalá, 8 Km N of Ejido Raymundo Flores in the Biosphere Reserve La Sepultura,
16°02'20" N, 93°35'30" W, 900 m, deciduous tropical forest, 5 Sep 1995, Pérez-Farrera 741 (HEM). This differs from *Adiantopsis radiata* (L.) Fée, a very common species in deciduous tropical forest, in its ovate, pinnate blades. *Adiantopsis seemannii* is a very rare species at this locality, and grows with *A. radiata* on rock in open-canopy forest. *Adiantopsis seemannii* ranges along the Pacific coast of Mexico between 100–1400 m (Mickel and Smith, 2004). It also has been reported in Guatemala and Belize.

Doryopteris palmata (Willd.) J. Sm.—Mexico, Chiapas, Mpio. Villafloros, between El Ejido Tres Picos and Nueva Independencia, in the Biosphere Reserve La Sepultura, 16°10' N, 93°35' W, 1700 m, montane forest, 8 Aug 1995; Mpio. Villafloros, between El Ejido Tres Picos and Nueva Independencia, in Biosphere Reserve La Sepultura, (16°10' N, 93°35' W), 1700 m montane forest, 10 Aug 1995, Pérez-Farrera 672 (CHIP, UAMIZ); Pérez-Farrera 2983 (HEM); Mpio. La Concordia, Finca Cuxtepex, 50 km S of Nueva Independencia, in Biosphere Reserve El Triunfo, 15°43'49" N, 92°57'57" W, 1000 m montane forest, 14 Jun 2006, Mendez-Guzman 66 (HEM). This species differs from *D. concolor* (Langsd. et Fisch.) Kuhn var. *concolor* in its areolate venation and finely puberulous stipe grooves. Smith (Fl. Chiapas 2:1–370. 1981), Moran (Flora Mesoamericana 1:129, 1995), and Mickel and Smith (2004) cited Rovirosa 1084 (PH, NY and K) as a voucher for Chiapas. This specimen was cited by Rovirosa (Pterid. Sur Mex. 142. 1909), but has not been located by anyone since Rovirosa, thus the record remains unverified. Rovirosa collected in the Northern Highlands of Chiapas in a locality named “El Rosario”, between Bochil and Ixtapa. The present record is the first report of *D. palmata* from the Sierra Madre region and confirms the unseen Rovirosa report for Chiapas. This species is very rare and grows on rocky slopes in very wet montane, open-canopy forest.

Selaginella convoluta (Arn.) Spring—Mexico, Chiapas, Mpio. Jiiquipilas, El Campanario, 2.5 km N of Ejido Andrés Quintana Roo, (16°37' 30" N, 93°34'28" W), 650 m, deciduous forest, 16 Jun 2004, Gómez-Domínguez 780 (HEM); El Campanario, 2.5 km N of Ejido Andrés Quintana Roo, 650 m altitude (16°37' 30" N, 93°34'28" W), deciduous forest, 16 Jun 2004, Pérez-Farrera (CHIP); El Campanario, 2.5 km N of Ejido San Andrés Quintana Roo, 16°37' 30" N, 93°34'28" W, 650 m, deciduous tropical forest, 16 Jun 2004, Farrera-Sarmiento 440 (CHIP). This species is closely related to *S. lepidophylla* (Hook. et Grev.) Spring, but differs by its peltate lateral leaf bases with a single auricle. This record for Chiapas extends the distribution farther south and west in Mexico. Previously, according to Mickel and Smith (2004) the species was known in Mexico only from Yucatan, but it is widespread in the Neotropics (Guatemala, Honduras, Cuba, Hispaniola, Brazil, Bolivia, Paraguay, and Argentina). *Selaginella convoluta* grows on rocks in open deciduous forests, and is very abundant alongside species of *Selaginella*, *Cheilanthes*, *Lygodium*, and *Hemionitis*.
Asplenium dissectum Sw.—México, Chiapas, Mpio. Cintalapa, in forest, to 3 km NW of Ejido Rafael Cal y Mayor, La Ventana, 50 km to NW of Cintalapa, (16°58.370' N, 94°01.589"W), 942 m, montane tropical forest, 20 Aug 2005, Martínez-Meléndez N. 1234 (HEM). This species is a member of sect. Sphenopteris and is closely related to A. serra Langsd. & Fisch., but differs by its thin blade texture and bilacerate pinnae. This record for Chiapas extends the distribution farther southeast in Mexico. Previously, the species was known in Mexico only from Oaxaca, but it is widespread in the Neotropics (Guatemala, Nicaragua, Costa Rica, Panama, Cuba, Jamaica, Hispaniola, Colombia, Venezuela, Ecuador, and Brazil) (Mickel and Smith, 2004). Asplenium dissectum grows terrestrially in dense montane tropical forests.

Anemia tomentosa (Savigny) Sw. var. mexicana (C. Presl) Mickel—México, Chiapas, Mpio. Cintalapa, to 3 km al Rafael Cal y Mayor 50 km to NW of Cintalapa, (16°55.789' N, 93°59.649' W), 727 m, 20 de aug de 2005, Martínez-Meléndez N. 1232 (HEM); growing on rocks in Quercus forest. This variety is widely distributed in almost all states of Mexico. However it has not been recorded previously from Chiapas or the Yucatan Peninsula. This taxon is distributed in Hispaniola; Colombia, and Venezuela (Mickel and Smith, 2004). In Mexico, its closest relative appears to be Anemia karwinskiana (C. Presl) Prantl, from which it is distinguished by its thinner leaf texture and bipinnate-pinnatifid blades. Two other varieties of A. tomentosa are distributed in South America (Mickel, Iowa St. J. Sci. 36: 349–482. 1962).

We thank Dr. Christopher Davidson and Sharon Christoph for their financial support for the Floristic inventory of the Triunfo Biosphere Reserve, Chiapas. We also thank Jorge Martínez-Mélendez, Nicolas Méndez-Guzman, and Jeremías López-Chagala for their help in the field and processing of plants. Special thanks to Dr. Alan R. Smith for the verification of specimens and comments on the manuscript.—MIGUEL A. PéREZ-FARRERA, MA. EVANGELINA LÓPEZ-MOLINA, NAYELY MARTÍNEZ-MELÉNDEZ, and HÉCTOR GÓMEZ-DOMÍNGUEZ, Herbario Eizi Matuda, Facultad de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Tuxtla Gutiérrez, Chiapas, México, 29039.
Obituary: The Rev. Father Dr. V. S. Manickam S. J. (1944–2012)

With the passing away of Rev. Father Dr. Visuvasam Sousai Manickam, Pteridology in India has lost one of its great stalwarts. Father Manickam died on the 30th March 2012 at St. Mary’s Higher Secondary School, Madurai, bringing to an end a life of 68 years spent in spiritual quest and in the pursuit of Pteridology.

Born on 1st June 1944, in the small village of Kamalapuram, Dindigul District of Tamil Nadu, as one of several children, the second son of Visuvasam Paripooranam. After his local school studies he joined the Society of Jesus at Beschi College, Dindigul, in 1961 and studied religion for two years. He then went to Chennai to pursue his college studies and was ordained as a priest at Loyola College, Madras (as Chennai then was) in 1964–1967. He chose an undergraduate course in Botany at Loyola College, which he passed with a high mark and then went on to do a postgraduate course in Botany at St. Joseph’s College, Tiruchirappalli (Trichy), earning a first class degree through his dedication and attention to detail.

Following this and his awakening interest in Botanical studies, he was awarded a Ph.D. in Botany in 1975 at the University of Kerala, Thiruvananthapuram (Trivandrum), which he joined in 1971. He studied there under the guidance of Professor C. A. Ninan, in the school of the late Professor A. Abraham, to learn fern cytology. It was under Prof. Ninan’s stimulating supervision that he developed his ground-breaking research studying the cytology of South Indian ferns and carried out extensive detailed fieldwork on the Pteridophytes of the Western Ghats from 1969 onwards. He was able to explore the entire Palni Hill range, surveying and collecting some 2500
pteridophytes, and simultaneously pursued his profound religious development and studies. These pteridophyte collections were the basis for the taxonomic part of his Ph.D. work, which he completed at Kerala University from 1971–74. He also studied in detail the ecology of ferns of the Palni Hills, under the guidance of the French Institute, Pondicherry. This included correlating the distribution of ferns in the various phytogeographic zones of the Palni Hills to the micro- and macro-climate. During this work he investigated the cytology of about 35 species of ferns. The results were published in three books, Manickam & Ninan’s *Enumeration of ferns of the Palni Hills* (1976) and *Ecological Studies on the Fern Flora of the Palni Hills (S. India)* (1984) and Manickam’s *Fern Flora of the Palni Hills (South India)* (1986), as well as a further research-paper on cytology (Manickam, 1984). In these works Father Manickam made every effort to communicate with other botanical authorities internationally and to revise and update the taxonomy and nomenclature to a superior level. It was also a great advantage that unlike his predecessors he documented and numbered his collections conscientiously, providing the numbers and details in his publication, something that no other cytotaxonomists in India were doing at that time. As a result, it has still been possible 35 years later for one of us (CRFJ) to find and photographically record all his cytological voucher-specimens in various herbaria and apply a much changed, more critical modern taxonomy to them, long after he had produced his important cytological results. This has not been possible for the pteridological studies of any other workers from Trivandrum, even recently, who neither kept actual voucher-specimens, nor cited numbers in their publications, and the same applies to many of the earlier publications of the Prof. P.N. Mehra School at Panjab University, Chandigarh, or the work of Prof. T.S. Mahabale at Pune, and others. In South India only Manickam’s and Dr. J. Ghatak’s cytological work can be properly verified today and applied to modern pteridology.

After his Ph.D. he joined as Lecturer in Botany from 1979–1981 at the Rapinat Herbarium, St. Joseph’s College, Trichy, working with the accomplished Botanist, Dr. K.M. Mathew, on the ferns of Karnataka and the whole of the Western Ghats. His extensive herbarium collection from the earlier as well as more recent work is thus mainly housed at Trichy (RHT) and the well-documented, good quality cytological and distributional voucher-specimens he published have been photographed there and when necessary, critically re-identified by CRFJ. But he was not happy at Trichy, and in 1982 he transferred to St. Xavier’s College, Palayamkottai, as Lecturer in Botany. From 1982 to 2008 he was settled and worked for nearly 30 years at his beloved St. Xavier’s College and continued the bulk of his research career there, also supervising many students and introducing them to the fascinating world of Pteridology, and Botany in general, in a series of major projects. His extensive later herbarium collections are housed at St Xavier’s (XCH) and again nearly all the important voucher-specimens of his and his students’ have been photographed there for preservation by CRFJ.

During 1984–87, funded by the Department of Science & Technology, he carried out a major project on the Biosystematics of ferns of the Western Ghats
covering an area of 18,000 sq. km., and collecting some 5000 numbers of pteridophytes. Detailed field work was done in all the mountain ranges of Tamil Nadu and Kerala between Kanyakumari and Palghat. Assisted by his accomplished student, Dr. Varaprakasham Irudayaraj (b. 1960), who carried out a spectacular number of well-documented chromosome-counts, he investigated the cytology of 110 ferns collected from the area. The cytological and taxonomic results were published in two books, Manickam and Irudayaraj’s *Cytology of ferns of the Western Ghats South India* (1988) (with an addition and correction, Manickam and Irudayaraj, 1989) and the outstandingly useful and major illustrated work, Manickam and Irudayaraj’s *Pteridophyte Flora of the Western Ghats - South India* (1992).

In a second project funded by European Jesuits, the Western Ghats were explored from Palghat to Coorg in Karnataka. Detailed fieldwork was carried out in the Nilgiris, Silent Valley, Wyanad and Coorg, collecting 3500 numbers. As a part of this project, five families of ferns were subjected to preliminary phytochemical analysis by his research-scholars. A third related project concentrated on re-exploring several of the higher mountains such as the Anamallays, Palnis and Tirunelveli hills (resulting in a further book, Manickam and Irudayaraj’s *Pteridophyte Flora of Nilgiris, South India* (2003)).

In 1987 he crowned his research-career with the opening of a new and modern Research Laboratory at St. Xavier’s, the Centre for Biodiversity and Biotechnology (CBB), affiliated to Manonmanium Sundarnar University, Tirunelveli District. He was the founder and Director of the Laboratory, which concentrated on research on Pteridophytes, Angiosperms, and also environmental education to school teachers and children. In all, he supervised 25 Ph.D. students there, who all now have good positions in various organizations. He was successfully able to raise funding grants for the Laboratories’ Research-Projects amounting to more than two crore rupees (20 million Indian rupees, or c. 400,000 U.S.D.) from various International and National scientific and educational funding agencies.

Father Manickam was elected a Life Fellow of the Indian Fern Society in recognition of the high quality of his work. He published 10 botanical books and more than 180 papers (a selection of his publications is in *Indian Fern J.* 22(1–2):204–208 (2005)). Later in his life he also wrote a number of spiritually insightful religious discussions with a very practical and down to earth context designed to help young people.

Unfortunately in the last five years of his life the College wished to take over his grants and therefore sent him to stay at Madurai away from his former students at work. During this time he remained of perfectly sound mind and memory despite the injustice and disappointment of the situation. Even after his unwanted retirement Father Manickam was highly active intellectually. He had learned the Thirukural (of Tamil poetic literature) by heart and spent much time translating and expounding it. He was not only an excellent teacher but also a philosopher who would always guide young students in their chosen direction in life.

In the last year of his life, on 14th Aug. 2011, his village people celebrated a Golden Jubilee for Father Manickam's 50 years since joining the Society of Jesus (1961–2011). It was a most happy occasion, which he enthusiastically enjoyed.

Father Manickam's contribution to science, especially in Pteridology, amounts to a definitive and monumental treatment of the ferns of South India. The loss to science and Botany from his death is immense, as is the loss to humanity of his delightful personality. It is hard indeed to think of his beloved establishment now no longer filled with his jovial laughter, and his lifetime's expertise uniquely guiding his active students along the path of pteridology he trod so splendidly and dedicatedly. May his soul rest in peace.
INFORMATION FOR AUTHORS

Authors are encouraged to submit manuscripts pertinent to pteridology for publication in the American Fern Journal. Manuscripts should be sent to the editor at hauk@denison.edu. Acceptance of papers for publication depends on merit as judged by two or more referees. Authors are encouraged to contribute toward publishing costs; however, the payment or non-payment of page charges will affect neither the acceptability of manuscripts nor the date of publication.

Authors should adhere to the following guidelines; manuscripts not so prepared may be returned for revision prior to review. **Electronic submission is strongly encouraged**; however if it is necessary to submit hard copy, please submit one copy of the manuscript and include a review copy of illustrations and originals of illustrations. After acceptance, please submit final versions of manuscripts via FTP (contact the managing editor for instructions), email, or on diskette or CD ROM (see below for figure formatting). If submitting hard copies, use standard 8.5 by 11 inch paper of good quality, not “erasable” paper. **Double-space manuscripts throughout**, including title, author’s names and full addresses, a short, informative abstract, key words, text (including heads and keys), literature cited, tables (separate from text), and figure captions (grouped as consecutive paragraphs separate from figures). Arrange parts of manuscript in order just given. Include author’s name and page number in the upper right corner of every sheet, and provide an abbreviated running title. Provide margins of at least one inch (25 mm) all around on typed pages. Do not submit right-justified text, avoid footnotes, and do not break words at end of lines. Make table headings and figure captions self-explanatory. Use S.I. (metric) units for all measures (e.g., distance, elevation, weight) unless quoted or cited from another source (e.g., specimen citations). For nomenclatural matters (i.e., synonymy and typification), use one paragraph per basionym (see Regnum Veg. 58:39–40. 1968). Abbreviate titles according to Botanico-Periodicum-Huntianum (Lawrence et al., 1968, Hunt Botanical Library, Pittsburgh) and its supplement (1991). References cited only as part of nomenclatural matter are not included in literature cited. For shorter notes and reviews, omit the abstract and put all references parenthetically in text. Use Index Herbariorum (Regnum Veg. 120:1–693. 1990; or http://websun.nybg.org/bsci/ih/) for designations of herbaria. For more detailed instructions on manuscript preparation, see http://amerfernsoc.org/.

Illustrations should be proportioned to fit page width (5 inches or 12.5 cm) with caption ultimately to be included on the same page. Halftone and color images should be scanned at a minimum of 300 pixels per inch (ppi). Line art should be scanned at 1200 ppi whenever possible. Please note that nearly all images that are downloaded from the Internet or that are in JPEG or GIF format will be 72 dpi and not acceptable for the printing process. Indicate the file format of the graphics. Please submit image files in TIFF (preferable) or EPS format. Provide margins of at least 25 mm on all illustrations. For continuous-tone illustrations, design originals for reproduction without reduction or by uniform amount. In composite blocks, abut edges of adjacent photographs. Avoid combining continuous-tone and line-copy in single illustrations or blocks. Coordinate sequence and numbering of figures (and tables), with order of citation in text. Explain scales and symbols in figures themselves, not in captions. Include a scale and reference to latitude and longitude in each map.

Instructions for downloading electronic proofs and reprint order forms are sent to authors by the printer. Authors should send proof corrections of corrected proofs to the editor and reprint orders to the printer. Authors will be assessed charges for extensive alterations made after type has been set.

For other matters of form or style, consult recent issues of the American Fern Journal and The Chicago Manual of Style, 14th ed. (1993, Univ. of Chicago Press, Chicago). Occasionally, departure from these guidelines may be justified. Authors are encouraged to consult the editor for assistance with any aspect of manuscript preparation.

Papers of longer than 32 printed pages may be sent to the Editor of Pteridologia (memoir Editor, see journal cover page 2).
PTERIDOLOGIA ISSUES IN PRINT

The following issues of Pteridologia, the memoir series of the American Fern Society, are available for purchase:

For orders and more information, please contact our authorized agent for sales at: Missouri Botanical Garden Press, P.O. Box 299, St. Louis, MO 63166-0299, tel. 314-577-9534 or 877-271-1930 (toll free). For online orders, visit: http://www.mbgpress.org.

AMERICAN FERN JOURNAL ON MICROFICHE

Volumes 1–61 of the American Fern Journal are available as archival quality, silver positive microfiches. Single volumes or the entire run may be purchased. The fiches are easily read with 10x or greater magnification (using a dissecting microscope and transmitted illumination or a fiche reader). Silver negative microfiches of vols. 1–50 are also available. The price is $4.00 per volume or $244.00 per set of 61 volumes, postpaid.

Send your inquiry or order with a check or money order to: American Fern Society, Inc., % Ecology III, 804 Salem Blvd., Berwick, PA, 18603-9801.

FIDDLEHEAD FORUM

The editor of the Bulletin of the American Fern Society welcomes contributions from members and non-members, including miscellaneous notes, offers to exchange or purchase materials, personalia, horticultural notes, and reviews of non-technical books on ferns.

SPORE EXCHANGE

Ms. Denia Mandt, 12616 Ibbetson Ave., Downey, CA 90242-5050, is Director. Spores exchanged and lists of available spores sent on request. http://amerfernsoc.org/sporexy.html

GIFTS AND BEQUESTS

Gifts and bequests to the Society enable it to expand its services to members and to others interested in ferns. Back issues of the Journal and cash or other gifts are always welcomed and are tax-deductible. Inquiries should be addressed to the Membership Secretary.

VISIT THE AMERICAN FERN SOCIETY'S WORLD WIDE WEB HOMEPAGE:

http://amerfernsoc.org/
The Distinguished Legacy of DMB: Donald MacPhail Britton (1923–2012)
Kathleen M. Pryer 241

The Life of Barbara Joe Hoshizaki (1928–2012)
Robbin C. Moran 252

Low Within Population Genetic Variation and High Among Population Differentiation in Cytromium falcatum (L.f.) C. Presl (Dryopteridaceae) in Southern Korea: Inference of Population-Establishment History
Mi Yoon Chung, Jordi López-Pujol, Jae Min Chung, Ki-Joong Kim, and Myong Gi Chung 256

SEM Studies on Tracheids of Lycopodiaceae; Observations on Adaptations in Phylloglossum
Sherwin Carquist, Edward L. Schneider, and Kevin F. Kenneally 273

Phlegmariaurus changii (Huperziaceae), a New Hanging Firmoss from Taiwan
Tung-Yu Hsieh, Kent A. Hatch, and Yuan-Mou Chang 283

Lectotypification of Marsilea quadrifolia L. (Marsileaceae)
Dauilio Iamónico 289

Referees for 2012
293

Table of Contents for Volume 102 294
The American Fern Society

Council for 2012

KATHLEEN PRYER, Dept. of Biology, Duke University, P.O. Box 90338, Durham, NC 27708. President

JAMES E. WATKINS, JR., Dept. of Biology, Colgate University, Hamilton, NY 13346. President-Elect

MARY STENSVOLD, USDA Forest Service, 204 Siginaka Way, Sitka, AK 99835. Secretary

JAMES D. CAPONETTI, Div. of Biology, University of Tennessee, Knoxville, TN 37996-0830. Treasurer

GEORGE YATSKIEVYCH, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299. Membership Secretary

WARREN D. HAUk, Dept. of Biology, Denison University, Granville, OH 43023. Journal Editor

R. JAMES HICKey, Dept. of Botany, Miami University, Oxford, OH 45056. Memoir Editor

JOAN N. E. HUDSON, Dept. of Biological Science, Sam Houston State University, Huntsville, TX 77341-2116.

DAVID SCHWARTZ, 9715 Christey Way, Bakersfield, CA 93312-5617. Bulletin Editors

American Fern Journal

EDITOR

WARREN D. HAUk .. Dept. of Biology, Denison University, Granville, OH 43023, ph. (740)587-5758, e-mail: hauk@denison.edu

ASSOCIATE EDITORS

NAN CRYSTAL ARENS Dept. of Geoscience, Hobart & William Smith Colleges, Geneva, NY 14456

JOSE MARıÁ GABRIEL Y GALÁN Dept. de Biologıa Vegetal I, Universidad Complutense de Madrid, Madrid, Spain 28040

GERALD J. GASTONY Dept. of Biology, Indiana University, Bloomington, IN 47405-6801

GARY K. GREER Biology Dept., Grand Valley State University, Allendale, MI 49401

CHRISTOPHER H. HAUFER Dept. of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-2106

R. JAMES HICKey Dept. of Botany, Miami University, Oxford, OH 45056

PAULO LABIACK Universidade Federal do Paraná, Dept. de Botânica, 81531-980, Curitiba-PR, Brasil

ROBBIN C. MORAN New York Botanical Garden, Bronx, NY 10458-5126

NATHALIE NAGALINGUM Royal Botanical Garden Sydney, Sydney, NSW, Australia

CARL ROTHFELS Botany Dept., Duke University, Durham, NC 27708

EMILY SESSA Botany Dept., University of Wisconsin-Madison, Madison, WI 53706

MICHAEL SUNDUE Pringle Herbarium, The University of Vermont, Burlington, VT 05405

JAMES E. WATKINS, JR. Dept. of Biology, Colgate University, Hamilton, NY 13346

The “American Fern Journal” (ISSN 0002-8444) is an illustrated quarterly devoted to the general study of ferns. It is owned by the American Fern Society, and published at The American Fern Society, 1% Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299. Periodicals postage paid at St. Louis, MO, and additional entry.

Claims for missing issues, made 6 months (domestic) to 12 months (foreign) after the date of issue, and orders for back issues should be addressed to Dr. James D. Montgomery, Ecology III, 804 Salem Blvd., Berwick, PA 18603-9801.

Changes of address, dues, and applications for membership should be sent to the Membership Secretary. General inquiries concerning ferns should be addressed to the Secretary. Back volumes are available for most years as printed issues or on microfiche. Please contact the Back Issues Curator for prices and availability.

Subscriptions:

Society Membership – USA, Canada, Mexico (includes Journal and Fiddlehead Forum) $30

Society Membership – All other countries (includes Journal and Fiddlehead Forum) $40

Society Life Membership – $360 (add $120 mailing surcharge for outside USA, Canada, Mexico)

Regular Membership – USA, Canada, Mexico (includes Fiddlehead Forum) $15

Regular Membership – All other countries (includes Fiddlehead Forum) $22

Institutional Membership – $40 to USA, Canada, Mexico; $50 elsewhere (.53 agency fee)

POSTMASTER: Send address changes to American Fern Journal, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299.
The Distinguished Legacy of DMB: Donald MacPhail Britton (1923–2012)

KATHLEEN M. PRYER
Department of Biology, Duke University, Durham, NC 27708-0339, USA
e-mail: pryer@duke.edu

In a letter dated 23 May 1995, Donald M. Britton wrote to me, “... things are moving along at a leisurely pace and my lifestyle is changed – No pipe, No coffee, No chocolate peppermints, No stress, No strain. ...Dan [Brunton] and I are still banging away at Isoetes ...it is nice to have a hobby project so the old neurons do not completely short-circuit ...I noticed when I passed 70 that mail eased up considerably. I guess workers feel that either you are retired, or should be! One looks a bit furtively at the obits to see who has made the list”.

Fortunately for pteridology, Don Britton remained active in research throughout his “retirement” (Brunton, 2012a, 2012b; Brunton and Catling, 2012) and he published nearly 20 more papers after the aforementioned letter (Appendix 1). Most of these were with his longtime friend and collaborator Daniel F. Brunton. From 1995 to 2006 “Brunton and Britton” and “Britton and Brunton” described seven new North American species and hybrids of *Isoetes* (Appendix 2), and also published studies clarifying the distribution, status, and taxonomy of several more in this notoriously difficult genus (Appendix 3).

Donald MacPhail Britton (Fig. 1) was born on March 6, 1923 in Toronto, Canada, the youngest son of Arthur Britton and Marjorie Spence. He attended University of Toronto Schools (UTS) and was awarded a J. S. McLean Scholarship in Science to the University of Toronto in 1942. Britton was a hard-working and successful student, receiving the I. M. Gilchrist Prize in Botany (1944) and graduating with first class honors in science and biology (1946). That fall, he entered the graduate program at the University of Virginia under the auspices of a Philip Francis du Pont Fellowship. His time at UVA involved a semiannual migration, with the academic year spent at the Miller School of Biology (Charlottesville, VA), and the summer working at Blandy Experimental Farm (Boyce, VA). In 1950, Britton completed his Ph.D. with a dissertation entitled “Cytogenetic studies on the Boraginaceae” and received an honorable mention from the Virginia Academy of Science. The following year he married Mary Cronyn, whom he had met at the University of Toronto.

With Ph.D. in hand, Britton pursued a postdoctoral fellowship at the Department of Plant Science at the University of Alberta. Following this, he worked several years as an Assistant Professor of Horticulture at the University of Maryland, where he specialized in the cytotgenetics and breeding of *Rubus* and other flowering plants. In 1958 he moved to the University of Guelph and, in 1971, became a Full Professor in the Department of Botany and Genetics. He spent the remainder of his academic career at Guelph.
Showing an early interest in ferns, Britton became a member of the American Fern Society in 1946. Later in his career, he would be awarded an honorary membership in this Society—a special category for persons who have made outstanding contributions to the study of ferns. Britton’s early emphasis on angiosperms eventually gave way to a career-long focus on ferns. Building on his strong interest in cytogenetics, his first fern paper, entitled “Chromosome studies on ferns,” was published in the American Journal of Botany in 1953. This was a landmark paper following up on Manton’s (1950, see also 1973) methodological breakthrough combining acetocarmine staining with a squash technique that flattened dividing cells so that their chromosomes could be photographed in one focal plane. Prior to the introduction of this technique, the only method available to count chromosome numbers was to compare camera lucida drawings based on serial microtome sections of paraffin-
embedded material. Britton’s paper (1953) provided chromosome numbers for 25 species of ferns collected in southern Ontario. Because many of the species were also native to the British flora studied by Manton (1950), his work provided vital corroboration of Manton’s results, along with additional evidence of polyploidy in ferns.

While at Guelph, Britton supervised four graduate students in pteridology: Jane Rigby (M.Sc.1969, *Pellaea*), Laima Kott (M.Sc. 1972, *Polypodium*; Ph.D. 1980, *Isoetes*), Ruth Hersey (M.Sc. 1979, *Lycopodium*), and me, Kathleen Pryer (M.Sc. 1981, *Gymnocarpium*), all of whom published their work with him (Appendix 1). I remember how he would frequently come into the lab to read us letters (while smoking his pipe with tobacco from the local Wiff’n Puff) that he received from scientists all over the world who sought his opinion and shared new information with him. What a great way for students to learn about ferns and the kinds of research questions being asked at the time! This was well before Chris Haufler (who Britton referred to as the “wunderkind in Kansas”) took the fern world by storm with isozymes.

Britton also took his students to important fern meetings, including the famous New England Fern Conference that was held in Petersham, Massachusetts at Harvard Forest. These meetings were critical for fostering communication among botanists working on ferns, but in diverse disciplines. One of these trips included an introduction to the herbaria at Harvard and the wonderful hospitality of Alice and Rolla Tryon at their residence within a stone’s throw from the herbarium (where we feasted on the best fiddlehead appetizers ever...!).

I never called him Don, always Dr. Britton. But after I graduated with my M.Sc. from Guelph in 1981, I addressed him by his initials in correspondence and that is how I have always referred to him since—DMB. DMB was extremely generous with his time and very patient with everyone (students, colleagues, and amateur enthusiasts, alike), and through his example showed us how to put in the long hours to get those almost-perfect chromosome squashes, and to locate those hard-to-find ferns when doing fieldwork. DMB’s connection with those outside the academic world was particularly evident in how he was always so welcoming to anyone interested in his area of study. His quiet encouragement and the confidence it instilled in those working with natural history and regional conservation organizations were both effective and appreciated, as acknowledged when he was awarded an Honorary Membership by the Ottawa Field-Naturalists’ Club in recognition of both his scholarly and conservation contributions (Brodo et al., 2001).

Doing fieldwork with DMB was a treat (Fig. 2). It was a natural talent for him—it was as though he had special radar in the field for finding the ferns he was after. One does not learn how to do that from books, but by watching and observing, if you are fortunate to be with someone who has the “know how”. Field trips with DMB were meticulously planned—everything happened on schedule, ALWAYS with good humor, and without a hitch.

Except for one trip, a trip that is a favorite memory that still makes me smile, to a special *Gymnocarpium* collecting site in Wellington County, near Guelph,
to which we returned a few times to collect chromosome and spore material. It meant driving about 20 minutes from campus, parking on the side of the road, then trudging our way though a few acres of pasture with all our collecting gear in tow, to get to a woodlot that had the patch of ferns we were after. On one occasion, as we were making our way through the pasture, I spotted a bull facing us.... and he seemed to be pawing at the ground. I squinted for a better look, and nervously whispered to DMB "What is one supposed to do when you think a bull might be getting ready to charge?" Not getting an answer, I glanced over my shoulder and there was DMB, in the distance, with his great long legs hightailing it over the fence. I bolted after him at the speed of light, and learned another important lesson; don’t waste time asking questions, just watch and learn....

After his official retirement at age 65, DMB was awarded the title of Professor Emeritus by the University of Guelph. For nearly 20 more years, he enjoyed
going to his office every day, socializing with the younger members of his department, and continuing his scientific studies. The year following his retirement from Guelph, DMB coauthored a book with William J. Cody from Agriculture Canada entitled “Ferns and Fern Allies of Canada” (1989). Nearly 25 years later, it still is (and long will be) the definitive reference book on the ferns of Canada. In 1991, DMB was awarded the Lawson Medal for “outstanding scientific achievement over the period of a career” from the Canadian Botanical Association. He was awarded the Richard and Minnie Windler Award for his publication on Isoetes virginica with Brunton et al. (1996) in the journal Castanea. In 2007, the Field Botanists of Ontario awarded him the inaugural John Goldie Award for his dedicated service to the field of botany. The three fern taxa named in his honor (Appendix 4) provide further tribute to DMB’s contribution to our knowledge of ferns.

The last time I saw DMB was when I visited him in Guelph in June 2000 and we spent two days together racing over the countryside collecting as many different species of Equisetum as possible. It was a very productive effort—9 of the 15 species of Equisetum that are known worldwide can be found within a short distance from Guelph and he led me to all of them. This resulted in a phylogenetic publication in 2003 (Des Marais et al.) that was DMB’s first and only publication to include molecular DNA sequence data (or what he would call “the O. J. solution”). A paper presenting a molecular phylogeny of Cystopteridaceae (including Cystopteris and Gymnocarpium, two of DMB’s favorite ferns), and currently in press at Systematic Botany (Rothfels et al. 2013), is dedicated to the memory of DMB.

With a “second retirement” at age 80 (see tributes by: Brunton, 2003; Catling, 2003; Ceska and Ceska, 2003; Pryer, 2003; Reznicek, 2003), DMB’s world contracted, especially after being diagnosed with Alzheimer’s disease in 2008 and the death of his wife Mary in 2010. DMB was hospitalized on May 15, 2012 with pneumonia and died peacefully in hospice on May 18. A private family funeral service was held on May 19, followed by a memorial service to celebrate his life on July 28 at St. George’s Anglican Church in Guelph. He leaves behind his son Robert, and two daughters, Anne (Terry Greenlay) and Barbara, as well as two grandsons, Scott and Ben, of whom he was very proud.

To me, DMB embodies all that is essential to being a great scientific advisor, including a wry sense of humor and the ability to get students to move beyond their comfort zone. He is the one I have always tried to measure up to in my own scientific interactions, especially with graduate students. Several people contacted me this summer to say how very sorry they were to hear about our loss of DMB. They all described him as “a larger-than-life guy”. I will be forever grateful to DMB for the guidance and opportunities that he provided. His influence in my life has been pervasive—I think of him every time I interact with my own graduate students, every time I do fieldwork, and every time I see a bull in a pasture...

ACKNOWLEDGEMENTS

I am very grateful to DMB’s children (Robert, Anne, and Barbara), Dan Brunton, Usher Posluszny, Dean Whittier, and Michael Windham for their encouragement, insightful comments,
and help with preparing this tribute. David Barrington made useful comments in review, and George Yatskievych provided information regarding DMB’s American Fern Society membership.

LITERATURE CITED

APPENDIX 1. Fern bibliography (including abstracts and reviews) of Donald M. Britton, arranged first by decade, and then alphabetically within each decade.

1950s

1960s

1970s

1980s

1990s

2000s

Appendix 2. Pteridophyte taxa authored or co-authored by D. M. Britton.

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon name</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryopteridaceae</td>
<td>Dryopteris × algonquinensis</td>
<td>Canad. Field-Naturalist 89: 165.</td>
</tr>
<tr>
<td></td>
<td>D. M. Britton</td>
<td>1975.</td>
</tr>
<tr>
<td></td>
<td>& D. M. Britton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& D. M. Britton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. F. Brunt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. M. Britton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subsp. silvatica D. F. Brunt. & D. M. Britton</td>
<td></td>
</tr>
<tr>
<td>Isoetaceae</td>
<td>Isoetes prototypus D. M. Britton</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 3. Pteridophyte taxa redefined/recircumscribed by D. M. Britton and D. F. Brunton.

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon name</th>
<th>Citation</th>
</tr>
</thead>
</table>

Appendix 4. Pteridophyte taxa named in honor of D. M. Britton.

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon name</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sarvela) K. M. Pryer & Haufler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subsp. brittonii Fraser-Jen. & Widén</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. F. Brunt. & W. C. Taylor</td>
<td></td>
</tr>
</tbody>
</table>
Barbara Joe Hoshizaki (Fig. 1), past president and life member of the American Fern Society, died on 30 May 2012. She was one of the country’s leading fern horticulturists. Besides the American Fern Society, Barbara served as president of the Southern California Horticultural Institute and the Los Angeles International Fern Society. She had also served as vice-president of the Pacific Horticultural Foundation. Furthermore, she was an honorary member of the Los Angeles International Fern Society and the Tropical Fern and Exotic Plant Society, Inc. Throughout her career she collaborated with researchers in academia and with commercial and amateur horticulturalists. Traveling widely, she studied ferns in their native habitats in North and South America, the Pacific Islands, Southeast Asia, Australia, New Zealand, and Africa. She introduced many fern species into cultivation and wrote scientific and popular papers on ferns. An avid taxonomist, she corrected the scientific names of many ferns that had been misidentified in the horticultural trade.

Born June 14, 1928, Barbara attended public schools in Los Angeles. In 1951 she received a BS from the University of California, Los Angeles. There she met Mildred Mathias, a professor of botany, who became Barbara’s mentor and encouraged her to study ferns. In 1954 Barbara received an MS from UCLA and soon afterwards became a professor of biology at Los Angeles City College where she taught for 28 years. She was also Curator of Ferns at the UCLA Herbarium.

In 1967 Barbara spent eight weeks in Costa Rica on a fern course sponsored by the Organization for Tropical Studies (OTS). The course, taught by Warren H. Wagner, Jr., and John T. Mickel, introduced her to the diversity of tropical ferns and lycophytes, an experience she never forgot. She requested that, after her death, donations in her name be sent to OTS.

Barbara was best known for her book Fern Growers Manual (Knopf, 1975). This work, which treated about 390 species, served as a standard reference for ferns cultivated in the United States and Canada. A revised edition, which included about 700 species, was later published with Robbin C. Moran as co-author (Timber Press, 2001). It described and illustrated nearly all of the ferns and lycophytes commonly found in the horticultural trade in North America.

A personal reminiscence: While revising the Fern Grower’s Manual, I spent three days with Barbara and her husband, Takashi, a plant physiologist, at their home in Los Angeles. Their greenhouse and yard encompassed a superb collection of living ferns, which at its peak harbored about 1000 species. The purpose of my visit was to compare our descriptions of fern species in the revised manuscript with the living ferns in her garden. At the end of the three days, we had not completed the task. The collection was so extensive that we
were able to examine only about four-fifths of the outdoor ferns—and we never made it to the greenhouse! During the visit, it was apparent that Barbara's first-hand knowledge of ferns in her garden was remarkable. She often pointed out subtle distinctions between related species such as differences in shades of green of the leaves, how the leaves oriented themselves above ground, and seasonal timing in the production of leaves. I remember her telling me—much to my amazement as a "northerner"—that her biggest problem growing ferns was not cold weather but the fiercely hot and dry Santa Ana winds that barreled down from the San Bernardino mountains in the fall, sucking the moisture out of the soil and plants. Besides serving for research, Barbara's garden was the source of plants that she generously sent to whoever requested a particular species.

Barbara will be greatly missed. A warm, gentle, easy-going person, she readily helped others with all aspects of fern horticulture. She did much to popularize ferns, especially as a sought-after public speaker for horticultural societies and garden clubs. The fern world has lost a dear friend.

BIBLIOGRAPHY OF BARBARA JOE HOSHIZAKI (1928–2012)

Low Within Population Genetic Variation and High Among Population Differentiation in *Cyrtomium falcatum* (L.f.) C. Presl (Dryopteridaceae) in Southern Korea: Inference of Population-Establishment History

MI YOON CHUNG
Department of Biology, Gyeongsang National University, Jinju 660-701, Republic of Korea

JORDI López-Pujol
BioC-GReB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain

JAE MIN CHUNG
Department of Plant Resources Conservation, Korea National Arboretum, Pocheon 487-821, Republic of Korea

KI-JOONG KIM
School of Life Sciences, Korea University, Seoul 136-701, Republic of Korea

MYONG GI CHUNG
Department of Biology and the Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea

ABSTRACT.—In the Korean Peninsula, the current distribution of the warm-temperate and subtropical vegetation (including many homosporous ferns) is limited to southern coastal areas. Paleocological data suggest that during the Last Glacial Maximum this vegetation retreated to glacial refugia putatively located in southern Japan and/or southern China, followed by a post-glacial recolonization. Two broad scenarios of post-glacial recolonization could be hypothesized: extant Korean populations are derived from multiple source populations (i.e., from multiple refugia); alternatively, they originate from a single refugium. To test which of these scenarios is more likely, we surveyed patterns of genetic diversity in eight (*n* = 307) populations of *Cyrtomium falcatum* from southern Korea. We found extremely low levels of allozyme variation within populations coupled with high among-population differentiation. These data best support the second hypothesis, and indicate that the current genetic diversity may be a consequence of post-glacial long-distance dispersal events and subsequent founder effects. In addition, restricted gene flow among the discontinuous populations of *C. falcatum* in southern Korea has likely contributed to the high degree of among-population genetic differentiation. From a conservation perspective, several populations should be targeted for both *in situ* and *ex situ* conservation, as *C. falcatum* exhibits a high degree of divergence among populations.

KEY WORDS.—Dryopteridaceae, *Cyrtomium*, allozymes, conservation, founder effect, glacial refugia, homosporous fern, gametophytic selfing, population history, population structure

Genetic diversity patterns of plant species are shaped by interacting historical, biological, ecological, and demographic factors (Nevo *et al.*, 1984;
Hamrick and Godt, 1989; Gray, 1996; Duminil et al., 2007). From a historical viewpoint, the Quaternary glacial-interglacial oscillations played an increasingly recognized role in shaping the current distribution of plant species and thus, their contemporary levels and partitioning of genetic diversity within and among populations (Hewitt, 1999, 2000; Hu et al., 2009). For example, populations/species that occurred in formerly glaciated regions usually show lower levels of genetic diversity than those from unglaciated areas (e.g., glacial refugia) through founder effects and bottlenecks as a result of multiple stepwise colonization events (Hewitt, 1996; Widmer and Lexer, 2001; Jiménez et al., 2010). Thus, the patterns of genetic diversity maintained by the species (especially the spatial distribution of genotypes) are often used to infer the location of refuges and the post-glacial migration routes from these, and this has been particularly fruitful in Europe and North America (Soltis et al., 2006; Weiss and Ferrand, 2007, Hu et al., 2009; Hewitt, 2011).

Ferns have some life-history traits that are strikingly different from seed plants and that have potentially significant effects on patterns of population genetic variation. First, fern dispersal occurs via haploid spores. Second, their gametophytic generation is independent from the maternal sporophytes. Third, owing to their small size, fern spores tend to be dispersed much farther by wind compared to most seeds (Tryon, 1970, 1972), although this feature is analogous to the tiny, dust-like seeds of orchids (Arditti and Ghani, 2000). As in many seed plants, however, the majority of propagules fall around the immediate vicinity of the parent (Peck et al., 1990). Fourth, since spermatozoids require transport in water, male gamete dispersal distance of ferns tends to be very limited (within a few centimeters; Peck et al., 1990). Finally, in many homosporous ferns, in the absence of genetic load a single spore could produce a sporophyte via intragametophytic selfing (self-fertilization of a haploid gametophyte), enabling the successful colonization of new sites (Lloyd, 1974; Flinn, 2006; Edgington, 2007; Wubs et al., 2010). Intragametophytic selfing results, in a single generation, in completely homozygous sporophytes (Klekowski, 1972; Vogel et al., 1999a), a situation without analogue in seed plants. Thus, it has been suggested that genetically polymorphic populations could be attributed to the occurrence of multiple independent spore dispersal and establishment events over time, whereas genetically monomorphic homosporous fern populations are more likely to have arisen from single colonists (i.e., single spores; Pryor et al., 2001).

Habitat specificity and recurrent gene flow of homosporous ferns should be regarded as factors determining the degree of population differentiation. Soltis et al. (1989) hypothesized that xeric or rock dwelling ferns would exhibit higher among-population differentiation than would ferns occurring in mesic habitats, due to limited gene flow among isolated rocky habitats. Since then, several population-genetics studies have supported this hypothesis (Pryor et al., 2001 and references therein).

In Korea, many ferns are characteristic of the warm-temperate and subtropical vegetation, such as Cyrtomium falcatum (L.f.) C. Presl (Dryopteridaceae), a rock dwelling homosporous fern native to southern and eastern
Asia, which is taken here as a case study. This vegetation belt currently occurs in a narrow zone along the southeastern and southern coast (Yi, 2011). The few available pollen and spore records suggest, however, that this warm-temperate vegetation was likely absent from the Korean Peninsula during the Last Glacial Maximum (LGM, ca. 21,000 yr ago; e.g., Choi, 1998; Chung et al., 2006; Chung, 2007; Chung et al., 2010; Yi and Kim, 2010), a scenario consistent with regional vegetation reconstructions (e.g., Adams and Faure, 1997; Harrison et al., 2001; Hope et al., 2004; Prentice et al., 2011). On the southern coast of Korea, the onset of the Holocene (ca. 11,000 years BP) and the accompanying climatic amelioration were marked by a sudden increase in abundance of ferns in the family Polypodiaceae, and an abrupt decline in herbaceous taxa, together with the expansion of cool temperate deciduous broad-leaved forests (Chung et al., 2010). The first appearance after the LGM of broad-leaved evergreen vegetation in the Korean Peninsula was approximately 8,500 years ago (Chung, 2011) and somewhat earlier in Jeju Island (ca. 12,000–10,000 yr BP; Chung, 2007), which also coincided with a rise of fern spores, indicating warmer and more humid conditions (Chung et al., 2010). These paleovegetation studies suggest that post-glacial colonization either from southern Japan (e.g., Kyushu; Fig. 1) or southern China, which harbored glacial refugia for warm-temperate vegetation (e.g., Hope et al., 2004; Gotanda and Yasuda, 2008; López-Pujol et al., 2011; Qiu et al., 2011), would be much more plausible than persistence of warm-temperate and subtropical vegetation in Korean refugia during the Pleistocene glaciations.

Cyrtomium falcatum is an evergreen homosporous fern that usually grows on coastal rocky slopes in the warmer parts of south to northeastern Asia (India, Vietnam, eastern and southern China, Taiwan, southern Korea, and Japan; Iwatsuki, 1992). However, it has become naturalized in many parts of the world (including Hawaii, North America, Australia, western and southern Europe, Réunion Island, and South Africa) because it escaped from gardens (Roux, 2011). The species, 10–60 cm tall, has a short, erect rhizome, and thus, it is highly likely that proximally located individuals within populations are distinct genets. In southern Korea, *C. falcatum* usually grows on crevices in steep cliffs, rocks, and man-made vertically oriented stone walls near seashores, and thus, populations occur discontinuously. Chromosome numbers of *n* = 41 (diploid) or *n* = 82 (tetraploid) have been reported for *C. falcatum* in Japan (Iwatsuki, 1992).

Based on the life-history and ecological traits of homosporous ferns, together with the information available on the paleoecology of the Korean Peninsula, we hypothesize two broad scenarios for the origin of current populations of warm-temperate homosporous fern species in southern Korea. If contemporary populations were derived from multiple source populations (i.e., from multiple glacial refugia), presumably from southern Japan and/or southern China, we would expect high levels of within-population genetic variation as consequence of the admixture of genetically divergent lineages arriving from different refugia (i.e., the ‘melting pot’ effect that has been described for many European trees and shrubs; Petit et al., 2003). Regarding among-population
genetic differentiation, either low or high values would be exhibited depending on ecological factors (Hamrick and Nason, 1996). Large populations that are continuously distributed should exhibit low inter-population variation probably due to high recurrent gene flow between adjacent populations. In contrast, high genetic divergence would be expected among small disjunct populations because of low rates of gene flow between isolated
populations. Alternatively, if extant populations were established from colonizers coming from a single source (i.e., a single refugium), then within-population genetic variation would be low because of long-distance dispersal associated bottlenecks (e.g., Hewitt, 1996, 2000). Genetic differentiation among populations would be high or low depending on rates of contemporary gene flow among the Korean populations. To date, these colonization hypotheses have not been empirically tested for the warm-temperate and subtropical homosporous ferns native to the Korean Peninsula. In this study, we surveyed the levels and distribution of allozyme-based genetic diversity in *C. falcatum* to test which of the post-glacial colonization hypotheses is most likely. Achieving a better understanding of the genetic structure of this currently rare fern in the Korean Peninsula, in addition, will provide guidelines for its recovery and management.

Materials and Methods

Sample collection.—We collected one leaf segment (pinna) from each individual to minimize damage to the plants. A total of 307 individuals were sampled from eight populations of *C. falcatum* from southern Korea, including several islands (Fig. 1 and Table 1). All sampled leaf tissue was kept on ice until its transportation to the laboratory, where it was stored at 4°C until enzyme extraction.

Table 1. Summary of genetic diversity measures and mean fixation values (F_{is}) observed in eight populations of *Cyrtomium falcatum*.

<table>
<thead>
<tr>
<th>Population</th>
<th>n</th>
<th>%P</th>
<th>A</th>
<th>AR</th>
<th>H_{o} (SE)</th>
<th>H_{e} (SE)</th>
<th>F_{is}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF-1</td>
<td>36</td>
<td>14.3</td>
<td>1.14</td>
<td>1.14</td>
<td>0.044 (0.053)</td>
<td>0.043 (0.042)</td>
<td>−0.071</td>
</tr>
<tr>
<td>CF-2</td>
<td>36</td>
<td>14.3</td>
<td>1.14</td>
<td>1.12</td>
<td>0.039 (0.042)</td>
<td>0.046 (0.049)</td>
<td>0.154</td>
</tr>
<tr>
<td>CF-3</td>
<td>51</td>
<td>9.5</td>
<td>1.10</td>
<td>1.08</td>
<td>0.024 (0.036)</td>
<td>0.019 (0.028)</td>
<td>−0.270</td>
</tr>
<tr>
<td>CF-4</td>
<td>42</td>
<td>14.3</td>
<td>1.14</td>
<td>1.14</td>
<td>0.028 (0.026)</td>
<td>0.027 (0.025)</td>
<td>−0.037</td>
</tr>
<tr>
<td>CF-5</td>
<td>23</td>
<td>28.6</td>
<td>1.29</td>
<td>1.28</td>
<td>0.050 (0.041)</td>
<td>0.071 (0.050)</td>
<td>0.299</td>
</tr>
<tr>
<td>CF-6</td>
<td>18</td>
<td>4.8</td>
<td>1.05</td>
<td>1.05</td>
<td>0.019 (0.030)</td>
<td>0.018 (0.030)</td>
<td>−0.008</td>
</tr>
<tr>
<td>CF-7</td>
<td>76</td>
<td>9.5</td>
<td>1.10</td>
<td>1.10</td>
<td>0.044 (0.057)</td>
<td>0.044 (0.049)</td>
<td>0.001</td>
</tr>
<tr>
<td>CF-8</td>
<td>25</td>
<td>0.0</td>
<td>1.00</td>
<td>1.00</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>na</td>
</tr>
<tr>
<td>Average</td>
<td>38</td>
<td>11.9</td>
<td>1.12</td>
<td>1.11</td>
<td>0.031 (0.006)</td>
<td>0.034 (0.008)</td>
<td>0.030</td>
</tr>
<tr>
<td>Pooled samples</td>
<td>307</td>
<td>38.1</td>
<td>1.38</td>
<td></td>
<td>0.033 (0.018)</td>
<td>0.069 (0.034)</td>
<td></td>
</tr>
<tr>
<td>Homosporous fernsc</td>
<td>36.1</td>
<td>1.63</td>
<td></td>
<td></td>
<td>0.132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: n, sample size; %P, percentage of polymorphic loci; A, mean number of alleles per locus; AR, mean allelic richness based on a minimum sample size of 18 individuals; H_{o}, observed heterozygosity; H_{e}, Hardy-Weinberg (H-W) expected heterozygosity or gene diversity; SE, standard error; F_{is}, fixation index within populations; na, not available (because of monomorphism across all the loci examined in this population).

a Denotes significance ($P < 0.05$) based on permutation (999 replicates) under the null hypothesis of $F_{is} = 0$.

b Non-significant Weir and Cockerham (1984) estimate of F_{is} over populations.

c Allozyme-based genetic data from Tables 7 and 8 in Li and Hauffler (1999).
Allozyme electrophoresis.—We extracted enzymes by finely cutting leaf samples, adding an extraction buffer (Mitton et al., 1979), and then crushing them with a mortar and pestle. Enzyme extracts were absorbed onto chromatography wicks and stored in microtiter plates in an ultra-cold (−70°C) freezer until analyzed. We conducted electrophoresis on 13% starch gels, with three buffer systems. We used a modification (Haufler, 1985) of system 6 of Soltis et al. (1983) to resolve alcohol dehydrogenase (Adh), diaphorase (Dia-1, Dia-2), fluorescent esterase (Fe-1, Fe-2), and cathodal peroxidase (Cpx). We used system 11 of Soltis et al. (1983) to resolve glyceraldehyde-3-phosphate dehydrogenase (G-3-pdh-1, G-3-pdh-2), hexokinase (Hk-1, Hk-2), isocitrate dehydrogenase (Idh), phosphoglucoisomerase (Pg-1, Pg-2), phosphoglucomutase (Pgm-1, Pgm-2, Pgm-3), and shikimate dehydrogenase (Skdh). In addition, we used the morpholine-citrate buffer system (pH 6.1) of Clayton and Tretiak (1972) to resolve fructose-1,6-diphosphatase (F1,6) and malate dehydrogenase (Mdh-1, Mdh-2, Mdh-3). We followed stain recipes from Soltis et al. (1983) except for diaphorase (Cheliak and Pitel, 1984). We designated putative loci sequentially, with the most anodally migrating isozyme designated as 1, the next 2, and so on. We also designated different alleles within each locus sequentially by a, the next b, and so on. The observed enzyme banding patterns were consistent with their typical subunit structure and subcellular compartmentalization in diploid plants (Weeden and Wendel, 1989).

Data analysis.—We considered a locus to be polymorphic when two or more alleles were observed, regardless of their frequencies. We estimated the genetic diversity parameters within populations using the programs POGENE (Yeh et al., 1999) and FSTAT (Goudet, 1995): percent polymorphic loci (%P), mean number of alleles per locus (A), allelic richness (AR) corrected by minimum sample size (n = 18 at CF-6, the population with the smallest sample size), observed heterozygosity (Hs), and Hardy-Weinberg (H-W) expected heterozygosity or Nei’s (1978) gene diversity (He). Except for AR and He, these parameters were also estimated for the total samples as a whole (i.e., at the species level). To test for recent decreases in effective population size (bottlenecks), we evaluated differences across loci between the H-W He and the equilibrium heterozygosity (Heq) expected assuming mutation-drift equilibrium. H-W He is not very sensitive to the fate of low frequency alleles, whereas Heq is relatively sensitive to population bottlenecks, and declines as a result of the loss of such alleles. These differences (He − Heq calculated for a number of independent loci) were evaluated using a sign test and a Wilcoxon sign-rank test under an infinite allele model using the program BOTTLENECK (Piry et al., 1999). Since allelic diversity is generally lost more rapidly than He (Nei et al., 1975), recently bottlenecked populations will exhibit an excess of H-W He relative to Heq (Cornuet and Luikart, 1996; Luikart et al., 1998).

We used the program SPAGeDi (Hardy and Vekemans, 2002) to calculate population-level FIS (inbreeding) and its significance level by 999 permutations under the null hypothesis of FIS = 0. To measure deviations from H-W equilibrium at each polymorphic locus, we calculated averages of Wright's
(1965) F_{IS} and F_{ST} (deviations from H-W equilibrium of individuals relative to their local populations and local populations relative to the total population, respectively) following Weir and Cockerham (1984). Using FSTAT, we constructed 95% bootstrap confidence intervals (CI; 999 replicates) around means of F_{IS} and F_{ST}, and considered the observed F_{IS} and F_{ST} to be significant when the 95% CI did not overlap zero.

To test the overall pattern of genetic structure at the regional scale (i.e., isolation-by-distance effects), we conducted a Mantel test (Mantel, 1967) with 999 replicates, between all pairwise $F_{ST}/(1 - F_{ST})$ (F_{ST} was calculated following Weir and Cockerham, 1984) and the corresponding logarithm pairwise geographical distance (Rousset, 1997) under the null hypothesis of no spatial genetic structure (regression slope, $\beta = 0$). Finally, to determine the degree of genetic divergence among populations of *C. falcatum*, we calculated Nei’s (1978) unbiased genetic identity (I) and distance (D) between pairs of populations. Using Nei’s D values, we clustered populations into a phenogram following unweighted pair-group method using arithmetic averages (UPGMA).

Results

Allozyme variation within populations.—Of the 21 putative loci resolved for *C. falcatum*, eight were polymorphic (Dia-1, Fl1,6, Fe-1, Fe-2, Hk-2, Idh, Pgm-2, and Pgm-3). Allozyme variation within populations was extremely low across the eight studied populations: mean percentage of polymorphic loci within populations ($%P$) was 11.9, mean number of alleles per locus (A) was 1.12, and mean genetic diversity (H_s) was 0.034 (Table 1). Population CF-5 harbored the highest allelic richness and genetic diversity ($AR = 1.28$ and $H_s = 0.071$; Table 1), whereas no allozyme variation was found in CF-8 (Table 1). Slightly higher levels of genetic diversity were estimated from pooled samples over all populations ($n = 307$): $%P = 38.1$; $A = 1.38$; and $H_s = 0.069$ (Table 1). Although we did not conduct any bottleneck test on CF-8 because it had no allozyme polymorphism, we found no significant indications of recent bottlenecks in any of the remaining seven populations (Table 2).
Table 3. Allele frequencies for the three loci with the highest degree of population differentiation (F1.6, Pgm-2, and Pgm-3).

<table>
<thead>
<tr>
<th>Population</th>
<th>F1.6</th>
<th>Pgm-2</th>
<th>Pgm-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>CF-1</td>
<td>0.000</td>
<td>1.000</td>
<td>0.194</td>
</tr>
<tr>
<td>CF-2</td>
<td>0.000</td>
<td>1.000</td>
<td>0.514</td>
</tr>
<tr>
<td>CF-3</td>
<td>0.000</td>
<td>1.000</td>
<td>0.980</td>
</tr>
<tr>
<td>CF-4</td>
<td>0.000</td>
<td>1.000</td>
<td>0.083</td>
</tr>
<tr>
<td>CF-5</td>
<td>0.565</td>
<td>0.435</td>
<td>0.109</td>
</tr>
<tr>
<td>CF-6</td>
<td>0.750</td>
<td>0.250</td>
<td>1.000</td>
</tr>
<tr>
<td>CF-7</td>
<td>0.000</td>
<td>1.000</td>
<td>0.704</td>
</tr>
<tr>
<td>CF-8</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Population genetic structure.—Except for CF-3 and CF-5, population-level F_{IS} estimates were not significantly different from zero at the 0.05 level (Table 1). These results, as well as the non-significant multi-population-level F_{IS} ($F_{IS} = 0.030$; Table 1 and 95% CI = -0.254 to 0.401), indicated that populations were generally at H-W equilibrium. Deviations from H-W expectations due to allele frequency differences between populations were, in contrast, significantly high ($F_{ST} = 0.543$, 95% CI = 0.218 to 0.703). This level of among-population differentiation was largely due to skewed allele frequencies at the three loci $F1.6$, Pgm-2, and Pgm-3 (Table 3).

Pairwise Nei’s (1978) I values between populations were high, ranging from 0.878 (CF-3 vs. CF-8) to 0.997 (CF-2 vs. CF-7) and with a mean of 0.951 ± 0.011 (SD), which is comparable with the average values reported for other conspecific populations of homosporous pteridophytes (average $I = 0.911 ± 0.086$, $N = 16$; Soltis and Soltis, 1989) and of plants overall (average $I = 0.950 ± 0.059$, $N = 1,572$; van der Bank et al., 2001). The apparent discordance between the high values of F_{ST} and the high values of I in *C. falcatum* is simply due to the fact that only polymorphic loci are used for the calculation of F_{ST}, whereas both monomorphic and polymorphic loci are employed for estimating pairwise Nei’s I. The UPGMA phenogram showed that the eight populations were clustered largely in accordance with their geographical locations: CF-1/CF-2 and CF-5/CF-6/CF-8 (which are located in the eastern and western extremes of southern part of Korea, respectively) were clustered separately (Fig. 2). However, we found no significant correlation between pairwise genetic differentiation estimates and their corresponding between-population logarithm pairwise geographical distance ($b = 0.069$, $R^2 = 0.016$, $P = 0.277$; Fig. 3), indicating that most variation (ca. 98%) in genetic differentiation was due to factors other than geographic distance.

Discussion

Genetic diversity and structure.—Levels of within-population genetic diversity are extremely low in *C. falcatum* (mean population-level estimates;
Fig. 2. UPGMA phenogram based on Nei’s genetic distances between populations of *Cyrtomium falcatum.*

%P = 11.9, A = 1.12, H_e = 0.034). Although slightly higher values for these genetic diversity measures were obtained from pooled samples over all populations (%P = 38.1, A = 1.38, H_e = 0.069), A and H_e are still lower than expected for homosporous ferns (mean species-level estimates; %P = 36.1, A = 1.63, H_e = 0.132; Li and Haufler, 1999). The low levels of genetic variation in the southern Korean populations may be a consequence of post-glacial long-distance dispersal events and subsequent founder effects (see below for a detailed discussion).

Populations of *C. falcatum* were generally at H-W equilibrium (multilocus population level F_\text{IS} = 0.030), a relatively unexpected finding since many homosporous ferns have potential for intragametophytic selfing (Klekowsk and Baker, 1966), which could cause a substantial deviation from H-W equilibrium (i.e., a deficit of heterozygotes) within populations. Consistent with this expectation, a considerable excess of homozygotes has been found within populations of species of *Botrychium* and *Mankya* (Ophioglossaceae), which have subterranean gametophytes that obligately self-fertilize via intragametophytic selfing (McCauley et al., 1985; Soltis and Soltis, 1986; Watano and Sahashi, 1992; Hauk and Haufler, 1999; M. Y. Chung et al., 2010). However, many diploid homosporous ferns exhibit high outbreeding rates (as inferred from inbreeding coefficients; Soltis and Soltis, 1989, 1992; Ranker and Geiger, 2008), and some studies have suggested that they possess mechanisms that promote outcrossing in natural populations (Klekowski, 1973; Haufler and Gastony, 1978; Haufler and Ranker, 1985; Wubs et al., 2010). Some of these mechanisms promote the formation of functionally unisexual gametophytes.
through the asynchronous maturation of male and female gametes and the control of antheridia initiation by the pheromone antheridiogen produced by maturing female gametophytes (Döpp, 1950; Lloyd, 1974; Haufler and Welling, 1994; Pajaron et al., 1999). This seems to apply for populations of C. falcatum, although we do not know which of the above-mentioned mechanisms is promoting outcrossing in the Korean populations of this fern.

Outcrossing plant species usually maintain most of their genetic variation within rather than among populations, whereas selfing species show the reverse trend (Brown, 1979; Hamrick et al., 1979). Thus, because populations of C. falcatum exhibit high inter-population divergence ($F_{ST} = 0.543$), factors other than mating system are probably important in shaping genetic structure among populations of C. falcatum. A high degree of genetic differentiation among populations has been observed in other homosporous ferns, including Adiantum capillus-veneris (Pryor et al., 2001), Asplenium csikii (Vogel et al., 1999b), Asplenium ruta-muraria (Schneller and Holderegger, 1996), Asplenium septentrionale (Holderegger and Schneller, 1994), Asplenium trichomanes subsp. quadrivalens (Suter et al., 2000), Cheilanthes gracillima (Soltis et al., 1989), and Sadleria cyatheoides and S. pallida (Ranker et al., 1996). For all these cases, patchiness of suitable habitat (which caused restricted gene flow) has been proposed as a major driver of population divergence. This habitat trait may also account for the high among-population differentiation found in C. falcatum in southern Korea, which is primarily due to allele frequency differences at three loci (Table 3). For example, six of eight populations were monomorphic at $F1,6$; of these, the CF-8 population was fixed for the allele a, whereas the other five populations were fixed for the allele b. At $Pgm-2$, CF-6 was fixed for the allele a, whereas CF-8 was fixed for the alternative allele b. Apart from the low levels of gene flow, genetic drift would have been enhanced by small population sizes. Although current populations are of moderate size (M. Y. Chung and M. G. Chung, pers. observ.)
and we did not find any indications of recent bottlenecks (BOTTLENECK is only able to detect those bottlenecks that have occurred within approximately the past $2N_e$–$4N_e$ generations; Piry et al., 1999), the possibility of older bottlenecks should not be dismissed.

Inference of colonization history of C. falcatum in the southern Korean Peninsula.—Since C. falcatum is a member of the warm-temperate and subtropical vegetation community, and the Korean populations are at the northern edge of the species' geographic range, one may hypothesize that it endured the Quaternary glacial periods at more southerly latitudes. Glacial refugia for many elements of warm-temperate and subtropical flora have been proposed to occur in southern Kyushu and also in southern Honshu, Japan (see Fig. 1; Tsukada, 1984; Hattori, 1985; Matsuoka and Miyoshi, 1998; Aoki et al., 2004; Gotanda and Yasuda, 2008). Fern spores usually have a high dispersal potential; ca. 500 ~ 800 km and even 3,200 km are suggested as maximum spore-dispersal distances (Tryon, 1970, 1972). The Tsushima (Korean) Strait was only about 10–20 km wide during the LGM and remained relatively narrow until ca. 14,000–12,000 yr BP (Park et al., 2000; Lee et al., 2008) being therefore easily passable. Even during the Holocene the 200 km channel width would have not constituted an insurmountable barrier for spore dispersal. Current populations of C. falcatum could also have arrived from the more distantly located southern regions, as the East China Sea (ECS) was largely exposed until at least 10,000 yr BP (Xu et al., 2010). Therefore, migrations from southern China, Taiwan or even from some locations offshore in the southern part of the ECS cannot be ruled out (see Harrison et al., 2001; Hope et al., 2004; Prentice et al., 2011).

The low within-population genetic variation for C. falcatum argues against the multiple-refugia hypothesis and supports the second hypothesis that the contemporary Korean populations of C. falcatum are descendant from colonizers from a single glacial refugium, presumably from southern Japan and/or southern China. However, we should bear in mind that these two proposed scenarios (multiple vs. single source populations) are the two extremes of a spectrum of possibility (e.g., some of the extant Korean populations could come from a single source, whereas others could originate from the admixture of several lineages). Moreover, many factors could have altered and/or modeled these "ideal" patterns, such as the number of colonization events, the number of propagules arriving at each colonization event, and the occurrence of genetic bottlenecks. For example, if population sizes have been historically small, random genetic drift since the post-glacial colonization events would have lead to low levels of intrapopulation genetic diversity even if the populations originated from multiple sources. In this latter case, patterns of genetic variation will be hardly distinguishable from those expected for species that immigrated from a single refugium. Clearly, more species (especially those continuously distributed) should be studied to draw firm conclusions about the post-glacial colonization history of warm-temperate homosporous fern populations currently occurring in Korea.

A similar scenario of glacial survival in remote refugia and post-glacial recolonization has been proposed for the homosporous fern *Dryopteris*
aemula. Jiménez et al. (2009) reported a total lack of allozyme variation \(H_T = 0.000\) of this fern in the Iberian Peninsula, which was attributed to founder effects during the Holocene expansion. Later, using five microsatellite loci and adding one population from the Macaronesian archipelago of Azores, Jiménez et al. (2010) found low levels of genetic variation within populations (total heterozygosity, \(H_T = 0.447\)) and a high degree of population genetic differentiation (\(F_{ST} = 0.520\)) in \(D. aemula\). Interestingly, the Macaronesian population was much more variable than the Iberian ones and, based on these findings, the authors suggested that the Azores acted as a glacial refugium from which \(D. aemula\) spread northeastward and recolonized mainland Europe (Jiménez et al., 2010). The role of glacial refugia as sources of plant diversity for the post-glacial recolonization in Europe of the Macaronesian Islands has been acknowledged in recent years (e.g., Caujapé-Castells, 2011; Fernández-Palacios et al., 2011; Hutsemékers et al., 2011).

In sum, southern Korean populations of \(C. falcatum\) exhibit low within-population genetic variation, which may be a consequence of post-glacial long-distance dispersal events, presumably from a single glacial refugium, and subsequent founder effects. In addition, restricted gene flow among the highly specific rock habitats on which \(C. falcatum\) occurs discontinuously in southern Korea would have contributed to the high degree of among-population genetic differentiation.

Conservation implications.—An understanding of how genetic diversity is partitioned within and among populations is critical to design adequate plant conservation plans (Godt and Hamrick, 2001; Sun and Wong, 2001). In order to preserve a representative sample of the genetic variation, species with high population differentiation require the conservation of more populations in situ, and also a more extensive population sampling for ex situ conservation. Since \(C. falcatum\) exhibits a high degree of divergence among populations, a relatively large number of populations should be targeted for both in situ and ex situ conservation. Using the formula proposed by Ceska et al. (1997), \(P = 1 - (F_{ST})^n\) (where \(P\) is the proportion of genetic variation desired to be preserved and \(n\) is the number of populations to be sampled/protected), we should protect/sample at least four populations in order to conserve \(\geq 90\%\) of the genetic diversity found in \(C. falcatum\). Considering allelic richness, allele frequencies, and the UPGMA phenogram, we suggest that the populations CF-1 and CF-7 from one of the clusters and CF-5 and CF-6 from the other cluster deserve both in situ preservation and ex situ conservation in southern Korea. Thus, these populations should be protected by law (e.g., by designing plant reserves), whereas spores should be collected and deposited in spore storage facilities (e.g., by cryoconservation; Ballesteros et al., 2012).

Acknowledgments

The authors thank Cheol Hwan Kim for helping us in locating populations of \textit{Cyrtomium falcatum} in southern Korea, and B. J. Shim, E. J. Im, M. S. Park, and C. H. Chung for field and laboratory assistance. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (R05-2004-000-11055-0) to MGC.
LITERATURE CITED

SEM Studies on Tracheids of Lycopodiaceae; Observations on Adaptations in Phylloglossum

SHERWIN CARLQUIST
Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93105, USA,
email: s.carlquist@verizon.net

EDWARD L. SCHNEIDER
Department of Horticultural Sciences, 258 Alderman Hall, University of Minnesota, Twin Cities
Campus, St. Paul, MN 55108, and University of Minnesota Landscape Arboretum, 3675 Arboretum
Drive, Chaska, MN 55318, USA, email: edschnel@umn.edu

KEVIN F. KENNEALLY
School of Earth and Geographical Sciences, Faculty of Natural and Agricultural Sciences,
The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia,
and Western Australian Herbarium (PERTH), Department of Environment and Conservation,
Kensington, WA 6152, Australia, email: kevin.kenneally@uwa.edu.au

ABSTRACT.—Scanning electron microscope (SEM) studies of stem and strobilus longisectons of
Huperzia, Lycopodium, and Phylloglossum were undertaken to explore ultrastructure of pit
membranes in tracheids. The membranes do not characteristically have pores and may often lack
evidence of cellulosic fibrils. Some pit membranes in Lycopodium did show cellulosic fibrils.
Porose membranes were seen in some tracheids, an appearance probably related to scraping away
of layers in pit membranes by the sectioning process, or in other cases, artifact formation.
Metaxytem tracheids have wide borders on pits. Truly "reticulate" metaxytem tracheids are few.
Protoxytem tracheids have helices with borders in Huperzia and Lycopodium, but in
Phylloglossum protoxytem annuli and helices are non-bordered. Phylloglossum, which appears
nested in Huperzia, lacks metaxytem and has numerous other adaptations to the distinctive
ephemeral vernal bogs of Australia and New Zealand, similar to those in Droseraceae and
Orchidaceae.

KEY WORDS.—adaptation to fire, Huperzia, Lycopodium, Phylloglossum, pit membranes, tracheid
ultrastructure, vernal bogs, xylem

Tracheids of Lycopodium were studied by Bierhorst (1960, 1971) and by
Wilder (1970) by means of light microscopy. Although the total number of
species studied was small, the differences among species were not great, so a
broad-based survey of tracheids in the family has not been undertaken by those
authors or by us. Cook and Friedman (1998) and Friedman and Cook (2000)
offered some fascinating new data on ultrastructure of Huperzia (formerly a
section of Lycopodium) tracheids. They demonstrated that the secondary wall
of Huperzia tracheids is composed of a "template layer" on which is
superimposed a "resistant layer." The template layer is lignin-poor, whereas
the resistant layer is rich in lignin.

Cook and Friedman (1998) and Friedman and Cook (2000) as well as Kenrick
and Crane (1991, 1997) and Edwards (1993) have sought to integrate
information on tracheid ultrastructure of early vascular plants with facts on
the ultrastructure of tracheary elements in extant groups of vascular plants.
Lycopodiaceae, along with *Equisetum*, play an important role in these considerations because they may retain some characteristics of tracheary element ultrastructure from early times (e.g., Devonian).

Our goals in the present study complement the abovementioned studies by offering scanning electron microscope (SEM) studies of primary walls in three of the four genera currently recognized in Lycopodiaceae. We investigated primary wall microstructure with respect to protoxylem versus metaxytem. Also, we have included the first studies on ultrastructure of *Phylloglossum* tracheids. We have focused on the possible existence of thin areas or porosities in tracheid primary walls, and whether or not cellulosic fibrils are visible with SEM in primary walls of tracheids. Such structures have been evident in tracheids and/or vessel elements of ferns (Carlquist and Schneider, 2007), *Equisetum* (Carlquist and Schneider, 2011a), cycads (Schneider et al., 2007), and various families of monocotyledons (Carlquist and Schneider, 2010a, 2010b; Carlquist, 2012). Presence of pores and abundance of cellulosic fibrils vary considerably among these groups. For example, the end wall of a grass vessel contains a single large pit membrane that dissolves as the vessel matures; we were unable to demonstrate cellulosic fibrils in those pit membranes (Carlquist and Schneider, 2011b). By contrast, the cellulosic fibrils in perforations of *Canna* vessel elements are striking and persist in the mature vessel elements (Carlquist and Schneider, 2010b). The presence of a reticulum of cellulosic fibrils or of pores in an intact pit membrane appears to mediate the balance between conductive safety (restricting air bubbles to a single tracheary element) and conductive efficiency (porousness permitting passage of greater volumes of water per unit time than non-porous pit membranes). Where the tracheids of Lycopodiaceae fall in this gamut is the point of interest in our investigation.

Study of three genera of Lycopodiaceae permits a preliminary examination of diversity of tracheid ultrastructure for the family. One of these genera, *Phylloglossum*, is of especial interest because of the distinctive habit, which in turn is related to a special ecological niche. *Phylloglossum* plants consist of a so-called tuber (coexisting with the production of a single new tuber), a root, several leaves, and a strobilus. There is no stem in any accepted sense, merely a junction among these organs. Each spring, as moisture permits, the tuber produces leaves, a root, and a strobilus, and a geotropic new tuber. The plant oversummers and survives fire by means of the tuber. The vascular system of *Phylloglossum* consists of a plexus of tracheids interconnecting root, leaves, and strobilus. No vascular tissue enters the tuber, and thus vascular tissue is not intercontinuous from one year’s plant body to the next year’s. The distinctive habitat occupied by *Phylloglossum* can be characterized as ephemeral bogs, shallow depressions of acid sand, underlain by a hardpan, that accumulate rainwater during the winter months but evaporate as spring progresses into summer. The interrelationships between this distinctive habitat and the unique morphology of *Phylloglossum* form an obvious reason for special attention to *Phylloglossum* xylem. The habits of remaining Lycopodiaceae, which consist of horizontal and/or upright or pendant stems,
is relatively uniform, but no less interesting in terms of mechanical and physiological aspects.

Materials and Methods

Sources of material are as follows. *Huperzia lucidula* (Michx.) Trevis: supplied by Carolina Biological Supply Company. *Lycopodium annotinum* L., *L. dichotomum* L., and *L. complanatum* L.: collected by E. L. Schneider at the moose-viewing platform along the Gunflint Trail, Minnesota, on September 12, 2011. *Phylloglossum drummondii* Kunze: specimen used for paraffin sectioning: collected between 120 and 121 mile post on highway between Brookton and Mt. Barker, Western Australia, on flat with grasses and sedges and annual *Stylidium* species; 9 October 1974, by Sherwin Carlquist (RSA). *Phylloglossum drummondii* used for SEM work: collected at Forrestdale Lake Nature Reserve, Western Australia, in seasonally waterlogged sandy clay flat (palusplain) with *Drosera* spp., *Utricularia multifida* and *Philydrella pygmaea*, 6 September 2007 by C. Tauss 1640 (PERTH). Recognition of genera in this paper follows that of Wikstrom and Kenrick (1997). The system for the family by Wagner and Beitel (1992) preceded molecular investigations and some genera recognized by them have not been followed in subsequent treatments.

All collections were preserved in 50% aqueous ethanol. The 1974 collection of *Phylloglossum* was embedded in paraffin according to the usual techniques; sections were stained with a safranin–fast green combination. Collections of all other Lycopodiaceae were sectioned by hand with a single-edged razor blade. The sections were subjected to three changes of distilled water, dried (with pressure applied) on a warming table, mounted on aluminum stubs, sputter-coated with gold, and examined with a Hitachi S2600N SEM. These methods have been described in more detail by Carlquist and Schneider (2007).

Results

Huperzia lucidula (Fig. 1A–D). SEM micrographs of *H. lucidula* in our preparations show a range of conditions. The metaxylem pit membranes in Fig. 1A show numerous holes of various sizes, but no convincing evidence of cellulosic fibrils. The holes may represent thin areas in the pit membrane, revealed only when portions of the pit membrane are shaved away by the sectioning process. No holes are evident in the pit membrane shown in Fig. 1B, which has not been affected by the sectioning process. Likewise, the metaxylem tracheids in Fig. 1C show no evidence of pores in the pit membranes (tears represent obvious artifacts).

In protoxylem of *H. lucidula* (Fig. 1D), primary walls (equivalent to pit membranes in metaxylem) without pores were observed. This appearance accords with the illustration for this species by Friedman and Cook (2000). Also in agreement with their illustration, we found a relatively abrupt shift from protoxylem to metaxylem wall patterns, with few reticulate tracheids.
Fig. 1. SEM micrographs of tracheids from longisections of stems of Lycopodiaceae. A–D. *Huperzia lucidula*. A. Metaxylem tracheid outer surface, showing porous appearance of the pit membrane. B. Metaxylem tracheid in sectional view, showing pit membranes in face view (above) and in sectional view (lower right); no porosities evident. C. Outer surfaces of two metaxylem tracheids; no pores evident in pit membranes (which do show some tears). D. Protoxylem (below) and metaxylem (above). E–F. *Lycopodium complanatum*. E. Protoxylem; some interconnections between the secondary wall helices occur in the tracheid above; no pores evident in primary wall. F. Porous primary wall in protoxylem, probably related to the sectioning process.
Lycopodium complanatum (Fig. 1E–F).

Protoxylem tracheids of *L. complanatum* in Fig. 1E show thin non-porose pit membranes on helical (below) and transitional (above) tracheids. Pores may be found on primary wall areas scraped away by sectioning (Fig. 1F), although the primary walls are otherwise non-porose.

L. annotinum (Fig. 2A–D).

In metaxylem, pit membranes of *L. annotinum* tracheids are typically non-porose (Fig. 2A). Tracheid pits that presumably have not been affected by sectioning (because they are viewed from the tracheid inside and seem intact), some pit membranes have a few small holes (Fig. 2B–C). These porosities may be irregularly distributed (Fig. 2B), and may represent some degree of artifact formation. In pits that have experienced scraping from the knife, a fibrillar structure is evident (Fig. 2D).

L. dichotomum (Fig. 2E–H).

Scattered small pores were observed in an apparently intact metaxylem tracheid (Fig. 2E). Protoxylem tracheids show pores to the degree that portions of the primary wall are shaved away by the sectioning process (Fig. 2F–G). The pit membrane portion shown in Fig. 2H is suggestive of presence of a fibrillar reticulate background. In the other instances, there is no indication of a fibrillar background because the porosities are circular rather than angular.

Phylloglossum drummondii (Fig. 3A–F).

The xylem studied in this species is derived from study of the vascular plexus, which interconnects strobilus, leaves, and root (see Introduction for a description of the plant body). *Phylloglossum* has no metaxylem. The bands of secondary wall in protoxylem tracheids are annular in a few places, but mostly helical (Fig. 3A). There are very few interconnections (indicating an approach to reticulate wall pattern) between the helices. The secondary wall annuli and helices are not bordered (Fig. 3B).

Primary walls of *Phylloglossum* tracheids are thin and homogeneous (Fig. 3C, E). Some areas show faint dark spots as recorded by the SEM (Fig. 3D). This rendering suggests that they are depressions. Areas of primary wall that have experienced some shaving from the sectioning process show pores (Fig. 3F) that correspond to the depression seen in Fig. 3D.

Discussion and Conclusions

Ultrastructure of the primary walls of tracheids.—Pits in metaxylem tracheids are oval in shape and prominently bordered in all Lycopodiaceae, as shown in the illustrations of Bierhorst (1960, 1971), Wilder (1970), Cook and Friedman (1998), and Friedman and Cook (2000). The appearances of pit
Fig. 2. SEM micrographs of tracheids from longisections of *Lycopodium*. A–D. *L. annotinum*. A. Outer surface of metaxylem tracheid, showing non-porous pit membrane extending across the pit border. B, C. Views of metaxylem pit membranes that have not been affected by sectioning, seen from inside the tracheid. B. A few small pores adjacent to a torn area (left). C. Porosities scattered within pit membrane. D. Metaxylem pit membrane that has been partially scraped away by the sectioning process, revealing a reticulum with strands. E–H. *L. dichotomum*. E. Pit membrane seen from inside a metaxylem tracheid, showing some holes of various sizes. F–H. Portions of protoxylem tracheids seen from their outer surfaces. F. Primary wall non-porous, except at left; secondary wall thickenings are bordered. G. Porose appearance in primary wall of helical tracheid. H. A portion of a primary wall from a helical tracheid, showing a reticulate appearance suggestive of a fibrillar background.
FIG. 3. Longisections of tracheids from the vascular plexus in plants of Phylloglossum drummondii. A, B. Light micrographs. A. Portions of tracheids to show annular (a) and helical (b) secondary wall bands. B. Optical sections of secondary wall bands (center), showing non-bordered condition. C–F. SEM micrographs. C. Portions of several adjacent tracheids, showing inner surfaces; primary wall portions non-porous. D. Portion of primary wall and two secondary wall helices from inner surface of tracheid; faint spots on the primary wall suggest presence of depressions. E. Inner surface of tracheid; secondary wall helices are borderless; primary wall is homogeneous in appearance. F. Shaved away portion of primary wall; minute pores are illustrated.
membranes that have experienced some degree of shaving away of wall material during the sectioning process suggest the presence of cellulosic fibrils, but this is not evident in the intact pit membranes we viewed. The circular shape and distribution of pores we observed in pit membranes that have not been affected by sectioning suggests the possibility that such holes may be artifacts caused by drying. However, porose appearances that are related to shaving away of wall material could indicate genuine thin areas in primary walls.

The abovementioned appearances are also found in primary walls of protoxylem tracheids. Homogeneous non-porose wall surfaces predominate in our material. This finding is in accord with the illustration of Friedman and Cook (2000) for *Huperzia lucidula*, which is based upon an SEM image of rotary microtome sections.

The paucity of cellulosic fibrils in primary walls of lycopodiaceous tracheids contrasts with appearances found in ferns (Carlquist and Schneider, 2007), cycads (Schneider et al., 2007), and monocots (Carlquist and Schneider, 2010a, 2011b). In the monocots, fibrillar appearances are common in end walls of tracheal elements of families with more numerous plesiomorphic features (Carlquist, 2012). Cellulosic fibrils are, by contrast, few in the pit membranes of the end walls, prior to lysis, of vessel elements of grasses (Carlquist and Schneider, 2011b), which have simple perforation plates. More observations on a diversity of pit membranes, preferably with transmission electron microscopy (TEM) is desirable. The electron microscope data of Friedman and Cook (2000) were focused on the secondary walls of *Huperzia* tracheids.

In monocots (Carlquist, 2012) and in some genera of ferns, (e.g., *Blechnum*, Carlquist and Schneider, 2007), there is differentiation between end walls and lateral walls of tracheal elements with respect to size of pits (or perforations), pit membrane porousness, and presence of evident cellulosic webs. This may be related to incipient tendencies toward acquisition of some characteristics of vessels. Such differentiation was not evident to any appreciable extent in our studies on cycad tracheids (Schneider et al., 2007). There is no differentiation between end walls and lateral walls in tracheids of Lycopodiaceae. This suggests that fascicles of tracheids, as in vascular cryptogam steles, serve as conductive units conjunctively, whereas individual vessels or tracheids with differentiation of end walls are the conductive units in monocots.

Unique adaptations of Phylloglossum.—Wikström and Kenrick (1997) found that *Huperzia* is paraphyletic, because *Phylloglossum* is nested within it (*Lycopodium + Lycopodiella* forms the other clade of the family). If we regard *Phylloglossum* as an extreme adaptation of the *Huperzia* clade, a number of adaptations become evident. The meristem that gives rise to each new geotropic tuber is exogenous, formed from surface tissue where the leaves and strobili join the old tuber. As the tuber elongates geotropically, a negatively geotropic meristem, which will give rise to the next year’s leaves and stems, forms within the new tuber at its upper end (see Bierhorst, p. 25). This is a unique structure within vascular plants. At this stage when the parent plant has produced leaves and a strobilus, the new tuber has no vascular tissue. The
vascular plexus that interconnects root with juncture between leaves and strobilus does not even take the form of any discernable stem or stelar configuration. As the current year’s plant body dries with the onset of the warm and dry season, the only surviving portion is the maturing new tuber, which contains no vascular tissue. Vascular tissue is initiated from the negatively geotropic meristem of the new tuber, apparently in response to leaf and strobilus initiation.

The vascular plexus, as we have seen, consists wholly of protoxylem. This fact is compatible with changing turgor in the plant, facilitated by the annular and helical patterns of the secondary wall within the tracheids. This correlates with changes in water availability in the wet vernal flats—ephemeral bogs of a sort—in which Phylloglossum grows.

Friedman and Cook (2000) illustrated borders on secondary wall in protoxylem tracheids of Huperzia. This corresponds with our observations on Huperzia and Lycopodium tracheids, although the sections of Friedman and Cook (2000) are clear in this respect because they observed rotary microtome sections with SEM. Phylloglossum, by contrast, lacks borders on the secondary wall annuli and helices of tracheids. The borderless condition confers more flexibility, because the investment in cellulosic wall material is less.

There are several interesting implications of the anatomy of Phylloglossum and its xylem. One can regard the plant body of Phylloglossum as paedomorphic, as Wikström and Kenrick (1997) do, in that it produces so few leaves and only one root, and yet produces a strobilus with this minimal vegetative apparatus. The tuber does not represent a juvenilization of a stem, but a new kind of appendage. This innovation within Lycopodiaceae is truly remarkable, because it runs counter to the intuitive idea that an ancient group of vascular plants is less likely to produce a vegetative structure sui generis. The gemmae of Huperzia spp. are rather easily categorized, in contrast, as products of shoot dimorphism.

The xylem of Phylloglossum may certainly be regarded as paedomorphic, because it consists of protoxylem only, whereas all other Lycopodiaceae have metaxylem as well as protoxylem. The wall strength of metaxylem is sufficient to promote a self-supporting stem structure. Although sclerenchyma develops in the cortex of some Lycopodium species, it develops later than metaxylem (original data). The central issue at hand is whether or not one invokes the term “paedomorphic,” a functional correlation exists between the mechanical strength provided by cellulose deposition and the mechanical strength (or lack of it) in tracheids of Phylloglossum as compared to those of the remaining Lycopodiaceae. This relative lack of tracheids with reticulate wall thickenings in tracheids of Lycopodiaceae other than Phylloglossum suggests that elongation (congruent with annular and helical wall thickenings of protoxylem) abruptly yields to self-support (a characteristic of pitted tracheary elements with appreciable wall thickness).

Interestingly, Phylloglossum shares its habitat with other vascular plants that produce tuber-like structures with various modes of origin, notably...
Droseraceae, certain Stylidiaceae, and *Utricularia menziesii* R. Br. (Utriculariaceae). Studies on the comparative physiology and timing of photosynthate storage and retrieval of these plant assemblages together with xylem characteristics would be of interest. One should point out, as do Wikström and Kenrick (1997) with respect to *Phylloglossum*, that tuber formation is also a strategy of fire avoidance. Data on soil temperature gradients with respect to the species with tuber-like perennation structures in these areas would be of special interest, because most of these structures are relatively close to the ground surface in the “vernal bog” habitats. More deeply buried tuber-like structures are formed in various Orchidaceae native to sand areas of Australia (especially Western Australia), a fact which correlates with the fact that those Orchidaceae tend to co-exist with more shrubs, which would provide greater heat when burned.

Literature Cited

Phlegmariurus changii (Huperziaceae), a New Hanging Firmoss from Taiwan

TUNG-YU HSIEH
School of Forestry and Resource Conservation, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan

KENT A. HATCH
Biology Department, C.W. Post Campus of Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA

YUAN-MOU CHANG*
Department of Ecoscience and Ecotechnology, National University of Tainan, 33 Su-Lin Street, Section 2, Tainan 700, Taiwan

ABSTRACT.—We describe and illustrate a new firmoss, Phlegmariurus changii (Huperziaceae), which is endemic to eastern Taiwan. This new species is most similar to Phlegmariurus carinatus (Desv. ex Poiret) Ching; however, it differs by leaves that are flat abaxially. In addition, the sporophylls and trophophylls are conspicuously dimorphic for Phlegmariurus changii, but essentially monomorphic in Phlegmariurus carinatus. The ecology, conservation status, and morphology of P. changii is compared to that of species in three other sections (Sect. Phlegmariurus, L. B. Zhang, Sect. Huperzioides H. S. Kung et L. B. Zhang, and Sect. Carinaturus (Herter) H. S. Kung et L. B. Zhang) of Phlegmariurus in East Asia.

KEY WORDS.—Phlegmariurus, flora of Taiwan, taxonomy, ornamental fern, tassel fern, extinct in the wild

In the spring of 2006, we collected a unique hanging firmoss at Hsilin Village, Wanrong Township, Hualien County in eastern Taiwan. After consulting the relevant literature (Ching, 1981b; Ching, 1981a; Ching and Zhang, 1983; Ching, 1982; Holub, 1991; Kuo, 1985; Li et al., 1975; Ma, 1990; Medeiros et al., 1996; Wagner et al., 1999; Wagner et al., 1995; Wagner, 1993; Yang, 1984; Zhang, 2004; Zhang and Kung, 1999; Zhang and Kung, 2000; Fernández Prieto et al., 2008; Rothmaler, 1944; Knapp, 2011; Kuo, 1997; Huang, 1994) and abundant herbarium specimens, we found that this species is new and we describe it herein.

This species belongs to the Lycopodiales. The Lycopodiales were historically considered a single family, the Lycopodiaceae, which contained two genera, Phylloglossum Kunze and Lycopodium L. Phylloglossum is a genus containing only one species and endemic to Australia and New Zealand, whereas Lycopodium sensu Linnaeus are widely distributed in temperate and tropical regions. Lycopodium L. is a complex group and has undergone many changes in taxonomy and nomenclature (Holub, 1991; Wagner and Beitel, 1990; Hsu, 1984; Zhang, 2004; Zhang and Kung, 1999; Zhang and Kung, 2000; Fernández Prieto et al., 2008; Rothmaler, 1944; Knapp, 2011; Kuo, 1997; Huang, 1994) and abundant herbarium specimens, we found that this species is new and we describe it herein.

*Corresponding author; email: changyuanchang@gmail.com
1992; Wagner, 1993; Øllgaard, 1987). *Lycopodium* has been separated into two families, the Urostachyaceae Rothm. (=Huperziaceae Rothm.) and the Lycopodiaceae (Rothmaler, 1944), and several genera. There are two genera—*Phlegmariurus* and *Huperzia* Bernh.—in Huperziaceae. In this article, we follow Wagner's classification and include this species in *Phlegmariurus* (Wagner and Beitel, 1992).

Many species of *Phlegmariurus* (Herter) Holub are important traditional medicines and popular ornamental ferns in the flower markets, such as *Phlegmariurus squarrosus* (Forst.) Love et Love, *P. carinatus* (Desv. ex Poiret) Ching, and *P. cunninghamiaeoides* (Hayata) Ching. Consequently, over-collection of plants from the wild for medicinal and horticultural purposes threatens many species (Yumkham and Singh, 2011). Of the ten species of *Phlegmariurus* that occur in Taiwan, all but *P. fordii* (Baker) Ching are threatened (Moore, 2000; Moore, 2001; Kuo, 1997). This makes the finding of a new species in Taiwan important.

This new species is similar to *P. carinatus* (Desv. ex Poiret) Ching, but differs by having leaves that are flat, vs. carinate or raised abaxially in *P. carinatus*. Epiphytes, pendant firmoss; stems 0.6–0.9 m long, 3–5 mm in diameter, dichotomously branching 5–8 times. Leaves sessile, leathery, lanceolate, entire, with tapering apex, 7–9 mm long, 3–4 mm wide, imbricate, pointing towards the apex of the shoot, appressed, decreasing in size towards apex and gradually changing into sporophylls. Fertile spikes terminal, 0.15–0.2 m long, 2 mm thick. Sporangia reniform, borne in the axil of the sporophyll, green turning to yellow when mature, ca.1.3 × 1.2 mm. Spores trilete, radially symmetrical, foveolate, tetrahedral from the polar view, having a laesura with three radiating branches near to the equator, ca. 34 × 32 μm.

Additional Specimens Examined.—TAIWAN. Hualien County: Wanrong Township, Hsilin Village, ca. 200 m alt., 6 Apr 2006, T. C. Hsu 461 (TAIF); same loc., s.d., Liang-Ru Chang s.n. (TAI).

Etymology.—The specific epithetic commemorates the original discoverer of this species, Liang-Ru Chang. He is an active amateur fern and orchid lover (Lin et al., 2006).

Notes.—Liang-Ru Chang first found this hanging firmoss in the spring of 2006, from the type locality at Hsilin Village, Wanrong Township, Hualien County. The holotype was collected from the trunk of an old *Schefflera* tree (*Schefflera octophylla* (Lour.) Harms) on a cliff beside a valley, at about 200m altitude, growing with many plants of *Vittaria zosterifolia* Willd. (Fig. 2A).

After the initial discovery, the first author conducted a long-term, regular and exhaustive field investigation for *P. changii* thorough the island during the field work for his PhD study in 2006–2011 (Hsieh et al., 2007; Hsieh et al.,...
During this period, only three habitats were found. All three were found at separate locations in lowland of Taitung and Hualien County, in eastern Taiwan. Unfortunately, all known wild individuals have since been removed by other collectors. There are two cultivated individuals
as far as we know. Given this situation, according to the IUCN (The International Union for Conservation and Natural Resources) ranking system (IUCN, 2008), this species should be considered extinct in the wild (EW) temporarily. We will continue our field investigation for this species and hope that we can find the individuals of this species in the wild again in the future. By doing so, we can re-evaluate the conservation status of this species.

Phlegmariurus carinatus is the only species that is morphologically similar to P. changii. Phlegmariurus changii can be distinguished from species in the
three sections of *Phlegmariurus* in East Asia., Sect. *Phlegmariurus*, L. B. Zhang, Sect. *Huperzioides* H. S. Kung et L. B. Zhang, and Sect. *Carinaturus* (Herter) H. S. Kung et L. B. Zhang. *Phlegmariurus changii* can be distinguished from species in both Sect. *Phlegmariurus* and Sect. *Huperzioides* by having all leaves appressed on the stem, imbricate, and pointing towards the apex of the shoot. This is not the case in the later two groups (Zhang and Kung, 1999; Zhang and Kung, 2000). Compared to species of Sect. *Carinaturus*, the leaves of *P. changii* are relatively large and flat. By comparison, the leaves of Sect. *Carinaturus* are carinate or raised on the abaxial side, whereas they are but flat in *P. changii*. Sporophylls and trophophylls are homomorphic for species of Sect. *Carinaturus* (Zhang and Kung, 2000), but dimorphic for *P. changii* (Figs. 1B, 1D, 2E, 2F).

ACKNOWLEDGMENTS

We greatly appreciate Jian-Hong Chen for help with fieldwork; Che-Wei Lin for preparing the line drawings; Liang-Ru Chang and Tian-Chuan Hsu for the useful habitat information; and Kuang-Ming Hsu for taking SEM photos. We also thank Professor Tsung-Hsin Hsieh and two anonymous reviewers for commenting on an earlier draft of this manuscript. This study was supported in part by grants from the Research Center for Biodiversity, Academia Sinica (Taipei, Taiwan) to Ching-I Peng (HAST) and the Division of Silviculture, Taiwan Forestry Research Institute (Taipei, Taiwan) to Ching-Te Chien.

LITERATURE CITED

Hsieh, T. Y. 2011. Taxonomy and distribution of indigenous *Actinidia* in Taiwan. PhD, National Chung-Hsing University, Taichung, Taiwan.

IUCN. 2006. IUCN Red list categories and criteria: version 7, IUCN—The World Conservation Union, Gland, Switzerland and Cambridge, United Kingdom.

Lectotypification of *Marsilea quadrifolia* L. (Marsileaceae)

DUILIO IAMONICO

Laboratory of Phytogeography and Applied Geobotany, Department DATA, Section Environment and Landscape, University of Rome Sapienza, 00185 Rome, Italy.

e-mail: d.imonico@yahoo.it

Abstract.—The typification of the binomium *Marsilea quadrifolia* L. (Marsileaceae) is discussed. To fix the application of the species name an iconography by de Jussieu is designated as the lectotype.

Key Words.—*Marsilea*, Linnaean names, nomenclature, typification

Marsilea L. (Marsileaceae Mirb.: Salviniales Bartl.) is a genus of approximately 45-50 species and has a cosmopolitan distribution, although it is infrequent in cool-temperate regions and oceanic islands (Kubitzki, 1990; Johnson, 1993; Nagalingum et al., 2007).

Linnaeus published three names under *Marsilea* (*M. minuta*, *M. natans*, *M. quadrifolia*; Jarvis, 2007: 657), of which one (*M. natans*) is now placed in *Salvinia* Ség. (Salviniaeae T. Lestib.), as *S. natans* (L.) All. Of the other two names, only *M. quadrifolia* appears not to be typified. It is investigated here.

Typification

Linnaeus’ protologue (Linnaeus, 1753: 1099) consists of a short diagnosis, with seven synonyms cited from de Jussieu (1740: 263), Guettard (1747: 62), Bauhin (1623: 362; 1651: 789), Mappus (1742: 166), Morison (1699: 619), and Matthioli et al. (1586: 853). All these authors (except Guettard, 1747) provided illustrations that are thus original materials.

Bobrov (1984: 20) indicated the sheet No. 1254.2 at LINN as type. Although this plant agrees with the diagnosis, the sheet lacks the relevant *Species Plantarum* number (“2” in the case of *M. quadrifolia*) including only the Linnaean script “*Marsilea quadrifolia*.” So, it is to be considered a post-1753 addition to the collection and therefore not original material for the name (see Jarvis, 2007). According to Art. 9.2 of the ICNB (McNeill et al., 2012) a lectotype is “... a specimen ... designated from the original material ...” and, as reported in the Art. 9.3 “... original material comprises: (a) those specimens and illustration (... published either prior to or together with the protologue) upon which it can be shown that the description or diagnosis validating the name was based ...”. So, the choice by Bobrov (1984) is not correct. Johnson (1986: 35) proposed a de Jussieu collection (No. 1599-A at P-JU) as lectotype, but this would not have been studied or examined by Linnaeus (see Jarvis, 2007). In fact, although Stearn (1957: 106) reported that Linnaeus received
Fig. 1. Lectotype of Marsilea quadrifolia L. (from de Jussieu, 1740, pl. 15).
"many" specimens from de Jussieu, it is very difficult to know which specimens may have come from the author as there are no explicit annotation that might indicate this. The collection No. 1599-A at P-JU is therefore not original material for the name, and thus Johnson's (1986) lectotypification is incorrect, too. We have been unable to trace original material in any of the other Linnaean and Linnaeus-linked herbaria.

All original material (the images cited by Linnaeus from de Jussieu, Bauhin, Mappus, Morison and Matthioli et al.) clearly show leaves whose blades (cruciform, consisting of two pair of opposite and sessile leaflets) are the only feature that marks the Linnaean concept of the species ("MARSILEA foliis quaternatis"). de Jussieu's illustration (1740: pl. 15; see Fig. 1) is the most complete, showing a large part of a plant (letter "A" in the de Jussieu plate) including details of two leaves (letters "n" and "o") and a series of 11 drawings (some magnified) of the sporocarps (both entire and in longitudinal or transversal sections), sori, and spores (letters "B" - "m"). This iconography also agrees with the current application of this name (e.g., Akeroyd, 1993; Johnson, 1993). Thus, it is here designated as the lectotype for the name Marsilea quadrifolia.

Marsilea quadrifolia L., Sp. Pl. 2: 1099. 1753. Lectotype (designated here):

Lemma, pl. 15 in de Jussieu (1740: Histoire de Lemma). Fig. 1

LITERATURE CITED

Referees for 2012

All papers submitted to the journal are peer reviewed. Members of the editorial board and the American Fern Society, as well as additional scientists in cognate areas do these reviews on a voluntary basis. It is their work that contributes to the high quality of articles in the American Fern Journal and to its continued success. The American Fern Society and I extend our thanks to the following reviewers for the assistance, diligence, and patience in the year 2012 (My sincere apologies if I inadvertently omitted anyone from this list).

Nan Crystal Arens
Curtis Bjork
Maria Regina T. Boeger
Patrick Brownsey
Sherwin Carlquist
Wen-Lian Chou
Martha Cook
Jim Dunn
Ashley Field
Christopher Fraser-Jenkins
Jose Maria Gabriel y Galan
Jennifer Geiger
Gary Greer
G.A. de Groot
Amanda Grusz
Christopher H. Haugler
Paulo Labaki
Olga Martinez
Andy McCall
Klaus Mehlbrecher
Jordan Metzgar
Robbin C. Moran
Nathalie Nagalingum
Joel Nitta
Jarmila Pittermann
Monica Ponce
Jefferson Prado
Karen Renzaglia
Carl Rothfels
Germinal Rouhan
Ed Schneider
Jim Seago
Emily Sessa
Joanne Sharpe
Kirk Stowe
Mei Sun
Michael Sundue
Wes Testo
Dori Thompson
Olena Vasheka
Maggie R. Wagner
James E. Watkins, Jr.
Dean Whittier
Michael Windham
Lihing Zhang

Statement of Ownership, Management, and Circulation

Publication title and number: American Fern Journal (0002-8444). Date of filing: September 4, 2012. Frequency of issue: quarterly. Annual subscription price 2012: $25.00. Office of Publisher: c/o Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299. Editor: Jennifer Geiger. The American Fern Journal is wholly owned by the American Fern Society, Inc., with no bond holders. Physical address of the Society: c/o Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110. The purpose, function, and nonprofit status of the Society and its tax exempt status for Federal income tax purposes remains the same as in past years. The average press run for Volume 102 is 800, and was 800 for the issue appearing immediately prior to the filing date, for which 712 copies were mailed as paid circulation and 0 copies were mailed as free distribution, leaving 88 copies for office use and back-issues sales. I certify that these statements are correct and complete. George Yatskievych, Membership Secretary of AFS.
<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>Ahad, Burhan, Zafar A. Reshi, and Aijaz H. Ganaie. Azolla cristata in the Kashmir Himalaya</td>
</tr>
<tr>
<td>198</td>
<td>Alencar de Menezes, I. R. (See T. M. de Souza)</td>
</tr>
<tr>
<td>154</td>
<td>Andrade, J. C. (See M. F. B. Morais-Braga)</td>
</tr>
<tr>
<td>47</td>
<td>Bandyopadhyay, M. (See S. Das)</td>
</tr>
<tr>
<td>236</td>
<td>Benniamin Dr. A. and Chris Fraser-Jenkins. Obituary: The Rev. Father Dr. V. S. Manickam S. J. (1944–2012)</td>
</tr>
<tr>
<td>47</td>
<td>Bera, S. (See S. Das)</td>
</tr>
<tr>
<td>83</td>
<td>Biral, Leonardo and Jefferson Prado. First Record of Pellaea ovata (Pteridaceae) from Brazil</td>
</tr>
<tr>
<td>198</td>
<td>Boligon, A. A. (See T. M. de Souza)</td>
</tr>
<tr>
<td>198</td>
<td>Braga, M. F. B. M. (See T. M. de Souza)</td>
</tr>
<tr>
<td>198</td>
<td>Bueno, D. C. (See T. M. de Souza)</td>
</tr>
<tr>
<td>273</td>
<td>Carlquist, Sherwin, Edward L. Schneider, and Kevin F. Kenneally. SEM Studies on Tracheids of Lycopodiaceae; Observations on Adaptations in Phylloglossum</td>
</tr>
<tr>
<td>228</td>
<td>Carvalho, Fernanda Antunes, Alexandre Salino, and Charles Eugene Zartman. New Country and Regional Records from Brazilian Side of Neblina Massif</td>
</tr>
<tr>
<td>283</td>
<td>Chang, Y.-M. (See T.-Y. Hsieh)</td>
</tr>
<tr>
<td>208</td>
<td>Cheng, X. (See K. M. Zhang)</td>
</tr>
<tr>
<td>256</td>
<td>Chung, J. M. (See M. Y. Chung)</td>
</tr>
<tr>
<td>256</td>
<td>Chung, Mi Yoon, Jordi Lopez-Pujol, Jae Min Chung, Ki-Joong Kim, and Myong Gi Chung. Low Within Population Genetic Variation and High Among Population Differentiation in Cyrtomium falcatum (L.f.) C. Presl (Dryopteridaceae) in Southern Korea: Inference of Population-Establishment History</td>
</tr>
<tr>
<td>198</td>
<td>Costa, J. G. M. (See T. M. de Souza)</td>
</tr>
<tr>
<td>154</td>
<td>Costa, J. G. M. (See M. F. B. Morais-Braga)</td>
</tr>
<tr>
<td>198</td>
<td>Coutinho, H. D. M. (See T. M. de Souza)</td>
</tr>
<tr>
<td>154</td>
<td>Coutinho, H. D. M. (See M. F. B. Morais-Braga)</td>
</tr>
<tr>
<td>198</td>
<td>da Rocha, J. B. T. (See T. M. de Souza)</td>
</tr>
<tr>
<td>47</td>
<td>Das, Sayantani, Maumita Bandyopadhyay, and Subir Bera. Optimization of Protocol for Isolation of Genomic DNA from Leaves of Selaginella Species Suitable for RAPD Analysis and Study of their Genetic Variation</td>
</tr>
</tbody>
</table>
DE ARIAS, A. R. (See T. M. DE SOUZA) ... 198
DEVO, J. A. (See G. K. GREER) ... 32
DIAMOND, HOPE L., HEATHER R. JONES, AND LUCINDA J. SWATZELL. The Role of Aquaporins in Water Balance in CHEILANTHES LANOSA (Adiantaceae) Gametophytes ... 11
DIETRICH, M. A. (See G. K. GREER) .. 32
DONG, YUAN-HUO, QING-FENG WANG, AND ROBERT WAHITI GITURU. Effect of Habitat Modification on the Distribution of the Endangered Aquatic Fern CETATOPTERIS PTERIDOIDES (Parkeriaceae) in China ... 136
DUTTA, S. (See R. GHANTA) .. 216
FANG, Y. M. (See K. M. ZHANG) ... 208
FONE, M. L. A. (See T. M. DE SOUZA) ... 198
FRASER-JENKINS, C. (See Dr. A. BENNIAMIN) .. 236
GABRIEL Y GALÁN, JOSE MARIA and CARMEN PRADA. Farina Production by Gametophytes of ARGYROCHOSMA NIVEA (Poír.) Windham (Pteridaceae) and its Implications for Cheilanthoid Phylogeny ... 191
GANAIE, A. H. (See B. AHAD) ... 224
GHANTA, REBECA, SIKHA DUTTA, AND RADHANATH MUKHOPADHYAY. Occurrence of Dark Septate Endophytes in the Sporophytes of CHRISTELLA DENTATA ... 216
GI CHUNG, M. (See M. Y. CHUNG) ... 256
GITURU, R. W. (See Y.-H. DONC) .. 136
GÓMEZ-DOMINGUEZ, H. (See M. A. PÉREZ-FARRERA) 233
GREER, GARY K., MARGARET A. DIETRICH, JOSEPH A. DEVO, AND APRIL REBERT. The Effects of Exogenous Cytokinin on the Morphology and Gender Expression of OSMUNDA REGALIS Gametophytes ... 32
GUEDES, G. M. M. (See M. F. B. MORAIS-BRAGA) 154
HATCH, K. A. (See T.-Y. HSIEH) .. 283
HIRAYAMA, Y. (See C. TSUTSUMI) .. 55
HOUSHIZAKI, B. J. (See D. G. YANsURA) .. 69
HSIEH, TUNG-YU, KENT A. HATCH, YUAN-MOU CHANG. Phlegmariurus changii (Huperziaceae), a New Hanging Firmoss from Taiwan ... 283
IAMONICO, DUILIO. Lectotypification of *Marselia quadrifolia* L. (Marseliaceae) .. 289
JACONO, C. C. (See W. M. WHITTEN) ... 114
JONES, H. R. (See H. L. DIAMOND) ... 11
KAMACHI, HIROYUKI AND MUNENORI NOGUCHI. Negative Gravitropism in Dark-Grown Gametophytes of the Fern *Ceratopteris richardii* ... 147
KATO, M. (See C. TSUTSUMI) .. 55
KENNEALLY, K. F. (See S. CARLQUIST) ... 273
KHOLIA, B. S. *Botrychium simplex* E. Hitchcock: a New Moonwort for the Indian Himalayan Mountains ... 86
KIELING-RUBIO, MARIA, A., AND PAULO G. WINDISCH. *Elaphoglossum montanum*, a New Species from Southern Brazil ... 78
KIM, K.-J. (See M. Y. CHUNG) ... 256
LABIAK, P. H. (See J. B. PEREIRA) .. 174
LABIAK, PAULO H., A New Species and a New Hybrid in the Grammitid Fern Genus *Stenogrammitis* (Polypodiaceae) ... 161
LIU, J. H. (See K. M. ZHANG) .. 208
LÓPEZ-MOLINA, MA. E. (See M. A. PÉREZ-FARRERA) 233
LÓPEZ-PUJOL, J. (See M. Y. CHUNG) ... 256
LORSCHETTER, M. L. (See J. B. PEREIRA) ... 174
MAGRINI, SARA AND ANNA SCOPPOLA. Agravitropic Growth of the Early Leaves of Apogamous Sporophytes of *Dryopteris tyrhena* ... 181
MARTÍNEZ, OLGA, G., AND IGNACIO VILTE. The Structure of Petioles in *Pteris* (Pteridaceae) ... 1
MARTÍNEZ-MELÉNDEZ, N. (See M. A. PÉREZ-FARRERA) 233
MATOS, F. B. (See C. M. MYNSSEN) ... 167
MENEZES, I. R. A. (See M. F. B. MORAIS-BRAGA) .. 154
MORAN, ROBBIN C., The Life of Barbara Joe Hoshizaki (1928–2012) 252
MUKHOPADHYAY, R. (See R. GHANTA) ... 216
MYNSSEN, CLAUDINE M., AND FERNANDO B. MATOS. *Diplazium fimbriatum* (Athyr- iaceae), a New Species from Brazil ... 167
NAGALINGUM, N. S. (See W. M. WHITTEN) ... 114
Nogara, P. A. (See T. M. de Souza) ... 198
Noguchi, M. (See H. Kamachi) .. 147
Pereira, Jovani B., Paulo G. Windisch, Maria L. Lorscheitter, and Paulo H. Labiak. *Isoëtes mourabaptistae*, a New Species from Southern Brazil .. 174
Pérez-Farrera, Miguel A., Ma. Evangelina López-Molina, Nayely Martínez-Meléndez, and Héctor Gómez-Domínguez. New Records Of Ferns From Chiapas, Mexico ... 228
Prada, C. (See J. M. Gabriel y Galán) ... 191
Prado, J. (See L. Biral) .. 83
Pryer, Kathleen M., The Distinguished Legacy of DMB: Donald MacPhail Britton (1923–2012) ... 241
Rebert, A. (See G. K. Gseer) .. 32
Reshi, Z. A. (See B. Ahad) ... 224
Rolon, M. (See T. M. de Souza) ... 198
Salino, A. (See F. A. Carvalho) .. 228
Santos, K. K. A. (See M. F. B. Morais-Braga) 154
Saraiva, A. A. F. (See T. M. de Souza) .. 198
Saraiva, A. A. F. (See M. F. B. Morais-Braga) 154
Saraiva, R. A. (See T. M. de Souza) ... 198
Schneider, E. L. (See S. Carlquist) .. 273
Scoppola, A. (See S. Magrini) ... 181
Sigel, E. M. (See C. J. Rothfels) .. 184
Sobral-Souza, C. E. (See M. F. B. Morais-Braga) 154
Souza, T. M. (See M. F. B. Morais-Braga) 154
Swatzell, L. J. (See H. L. Diamond) ... 11
Tintino, S. R. (See M. F. B. Morais-Braga) 154
Turner, M. D. (See R. A. White) .. 198
Vega, C. (See T. M. de Souza) .. 91
Vilde, I. (See O Martínez) .. 1
Wang, Q.-F. (See Y.-H. Dong) .. 136
White, Richard A., and Melvin D. Turner. The Anatomy and Occurrence of Foliar Nectaries in Cyathea (Cyatheaceae) .. 91
Windham, M. D. (See C. J. Rothfels) ... 184
Windisch, P. G. (See M. A. Kieling-Rubio) 78
Windisch, P. G. (See J. B. Pereira) ... 174
Yansura, Daniel G., and Barbara J. Hoshizaki. The Tree Fern Highland Lace is a Cultivar of Sphaeropteris cooperi .. 69
Yatabe-Kakugawa, Y. (See C. Tsutsumi) 55
Zartman, C. E. (See F. A. Carvalho) ... 228
Zhang, G. F. (See K. M. Zhang) .. 208
Zhang, H. J. (See K. M. Zhang) ... 208
Zhang, S.-Z. (See C. Tsutsumi) ... 55

Volume 102, number 1, January–March, pages 1–90, issued 21 June 2012
Volume 102, number 2, April–June, pages 91–190, issued 17 July 2012
Volume 102, number 3, July–September, pages 191–240, issued 15 October 2012
Volume 102, number 4, October–December, pages 241–298, issued 4 April 2013
INFORMATION FOR AUTHORS

Authors are encouraged to submit manuscripts pertinent to pteridology for publication in the American Fern Journal. Manuscripts should be sent to the editor at hauck@denison.edu. Acceptance of papers for publication depends on merit as judged by two or more referees. Authors are encouraged to contribute toward publishing costs; however, the payment or non-payment of page charges will affect neither the acceptability of manuscripts nor the date of publication.

Authors should adhere to the following guidelines; manuscripts not so prepared may be returned for revision prior to review. Electronic submission is strongly encouraged; however if it is necessary to submit hard copy, please submit one copy of the manuscript and include a review copy of illustrations and originals of illustrations. After acceptance, please submit final versions of manuscripts via FTP (contact the managing editor for instructions), email, or on diskette or CD ROM (see below for figure formatting). If submitting hard copies, use standard 8.5 by 11 inch paper of good quality, not “erasable” paper. Double-space manuscripts throughout, including title, author’s names and full addresses, a short, informative abstract, key words, text (including heads and keys), literature cited, tables (separate from text), and figure captions (grouped as consecutive paragraphs separate from figures). Arrange parts of manuscript in order just given. Include author’s name and page number in the upper right corner of every sheet, and provide an abbreviated running title. Provide margins of at least one inch (25 mm) all around on typed pages. Do not submit right-justified text, avoid footnotes, and do not break words at end of lines. Make table headings and figure captions self-explanatory. Use S.I. (metric) units for all measures (e.g., distance, elevation, weight) unless quoted or cited from another source (e.g., specimen citations). For nomenclatural matters (i.e., synonymy and typification), use one paragraph per basionym (see Regnum Veg. 58:39–40. 1968). Abbreviate titles according to Botanico-Periodicum-Huntianum (Lawrence et al., 1968, Hunt Botanical Library, Pittsburgh) and its supplement (1991). References cited only as part of nomenclatural matter are not included in literature cited. For shorter notes and reviews, omit the abstract and put all references parenthetically in text. Use Index Herbariorum (Regnum Veg. 120:1–693. 1990; or http://websun.nybg.org/bsci/ih/) for designations of herbaria. For more detailed instructions on manuscript preparation, see http://amerfernsoc.org/

Illustrations should be proportioned to fit page width (5 inches or 12.5 cm) with caption ultimately to be included on the same page. Halftone and color images should be scanned at a minimum of 300 pixels per inch (ppi). Line art should be scanned at 1200 ppi whenever possible. Please note that nearly all images that are downloaded from the Internet or that are in JPEG or GIF format will be 72 dpi and not acceptable for the printing process. Indicate the file format of the graphics. Please submit image files in TIFF (preferable) or EPS format. Provide margins of at least 25 mm on all illustrations. For continuous-tone illustrations, design originals for reproduction without reduction or by uniform amount. In composite blocks, abut edges of adjacent photographs. Avoid combining continuous-tone and line-copy in single illustrations or blocks. Coordinate sequence and numbering of figures (and tables), with order of citation in text. Explain scales and symbols in figures themselves, not in captions. Include a scale and reference to latitude and longitude in each map.

Instructions for downloading electronic proofs and reprint order forms are sent to authors by the printer. Authors should send proof corrections of corrected proofs to the editor and reprint orders to the printer. Authors will be assessed charges for extensive alterations made after type has been set.

For other matters of form or style, consult recent issues of the American Fern Journal and The Chicago Manual of Style, 14th ed. (1993, Univ. of Chicago Press, Chicago). Occasionally, departure from these guidelines may be justified. Authors are encouraged to consult the editor for assistance with any aspect of manuscript preparation.

Papers of longer than 32 printed pages may be sent to the Editor of Pteridologia (memor Editor, see journal cover page 2).
PTERIDOLOGIA ISSUES IN PRINT

The following issues of *Pteridologia*, the memoir series of the American Fern Society, are available for purchase:

1. Wagner, David H. 1979. Systematics of *Polystichum* in Western North America North of Mexico. 64 pp. $10.00 plus postage and handling.

For orders and more information, please contact our authorized agent for sales at: Missouri Botanical Garden Press, P.O. Box 299, St. Louis, MO 63166-0299, tel. 314-577-9534 or 877-271-1930 (toll free). For online orders, visit: http://www.mbgpress.org.

FIDDLEHEAD FORUM

The editor of the Bulletin of the American Fern Society welcomes contributions from members and non-members, including miscellaneous notes, offers to exchange or purchase materials, personalia, horticultural notes, and reviews of non-technical books on ferns.

SPORE EXCHANGE

Mr. Brian S. Aikin, 3523 Federal Ave, Everett, WA 98201-4647 (spores.afs@comcast.net), is Director. Spores exchanged and lists of available spores sent on request. http://amerfernsoc.org/sporexy.html

GIFTS AND BEQUESTS

Gifts and bequests to the Society enable it to expand its services to members and to others interested in ferns. Back issues of the Journal and cash or other gifts are always welcomed and are tax-deductible. Inquiries should be addressed to the Membership Secretary.

VISIT THE AMERICAN FERN SOCIETY’S WORLD WIDE WEB HOMEPAGE:

http://amerfernsoc.org/